We performed a second-generation genome wide association study of 4,533 celiac disease cases and 10,750 controls. We genotyped 113 selected SNPs with PGWAS<10−4, and 18 SNPs from 14 known loci, in a further 4,918 cases and 5,684 controls. Variants from 13 new regions reached genome wide significance (Pcombined<5×10−8), most contain immune function genes (BACH2, CCR4, CD80, CIITA/SOCS1/CLEC16A, ICOSLG, ZMIZ1) with ETS1, RUNX3, THEMIS and TNFRSF14 playing key roles in thymic T cell selection. A further 13 regions had suggestive association evidence. In an expression quantitative trait meta-analysis of 1,469 whole blood samples, 20 of 38 (52.6%) tested loci had celiac risk variants correlated (P<0.0028, FDR 5%) with cis gene expression.
Statement LF and DAvH analysed UK GWAS data, selected SNPs and designed assays for golden gate genotyping. Substantial contributions to sample collections were made by DAvH, LD, GKTH, PH, JRFW, DSS (UK2 cases); DPS, WLMcA (1958 cohort controls); CJM, WV, MLM (DUTCH samples); VT, FMS, COM, NPK, DK (IRISH samples). UKGWAS genotyping was performed as described in PD lab2. KAH extracted UKGWAS and UK2 celiac DNA samples and performed UK2 sample golden gate genotyping. GrahamT and AWR prepared Irish DNA samples. GrahamT, AWR and KAH performed Irish sample golden gate genotyping. UK2 and IRISH genotyping was performed in CAM lab, DP performed quality control steps. AZ prepared DUTCH celiac and control DNA samples, and AZ and JR performed DUTCH sample golden gate genotyping in CW lab. DVH and KAH performed final golden gate genotype clustering on all samples, with assistance from RG. LD and DAvH collected Paxgene RNA celiac blood samples, GH extracted Paxgene RNA, GH and MB performed expression chips in CW lab, GH and LF analysed expression data. GosiaT performed IL18RAP re-sequencing. MCW processed intestinal biopsies, MB and MCW performed expression chips in CW lab, MCW and GH analysed expression data. DJP performed analysis of genes in intestinal T cell subsets. KAH and GH performed bioinformatics and annotation of celiac risk variant regions DAvH, RMM, CW were Principal Investigators and directed respectively the UK, IRISH and DUTCH sample collections and with RJP designed overall strategy and obtained funding for the study. DAvH directed the entire study, performed statistical analysis and generated the figures. DAvH and CW wrote the paper. RMcG, FT and WMMcL performed additional statistical analysis. To identify additional celiac disease susceptibility genes, we recently tested 310,605 SNPs in a genome wide association study of 778 celiac cases and 1,422 population controls from the United Kingdom (UKGWAS), using the Illumina HumanHap300 BeadChip2. The only SNP outside the HLA region demonstrating genome-wide significance was rs13119723 on 4q27, located in a ∼500 kb block of linkage disequilibrium (LD) containing the IL2 and IL21 genes2. Independent replication of SNPs from the IL2-IL21 region was established in both Dutch and Irish collections of celiac patients and controls. We estimate, using the current markers, that the IL2-IL21 region explains less than 1% of the increased familial risk to celiac disease, suggesting that there are additional unidentified susceptibility genes. Since we observed a greater number of significantly associated SNPs in the UKGWAS than would be expected by chance, we proceeded to study >1,000 of the most significant UKGWAS association results in a further 1,643 celiac cases and 3,406 controls from three independent European celiac disease collections. This two-stage strategy, involving a joint analysis of all data, substantially reduces the genotyping requirements versus performing whole genome genotyping on all samples and has been shown to maintain sufficient statistical power3. ...
Epidemiology and candidate gene studies indicate a shared genetic basis for celiac disease (CD) and rheumatoid arthritis (RA), but the extent of this sharing has not been systematically explored. Previous studies demonstrate that 6 of the established non-HLA CD and RA risk loci (out of 26 loci for each disease) are shared between both diseases. We hypothesized that there are additional shared risk alleles and that combining genome-wide association study (GWAS) data from each disease would increase power to identify these shared risk alleles. We performed a meta-analysis of two published GWAS on CD (4,533 cases and 10,750 controls) and RA (5,539 cases and 17,231 controls). After genotyping the top associated SNPs in 2,169 CD cases and 2,255 controls, and 2,845 RA cases and 4,944 controls, 8 additional SNPs demonstrated P<5×10−8 in a combined analysis of all 50,266 samples, including four SNPs that have not been previously confirmed in either disease: rs10892279 near the DDX6 gene (Pcombined = 1.2×10−12), rs864537 near CD247 (Pcombined = 2.2×10−11), rs2298428 near UBE2L3 (Pcombined = 2.5×10−10), and rs11203203 near UBASH3A (Pcombined = 1.1×10−8). We also confirmed that 4 gene loci previously established in either CD or RA are associated with the other autoimmune disease at combined P<5×10−8 (SH2B3, 8q24, STAT4, and TRAF1-C5). From the 14 shared gene loci, 7 SNPs showed a genome-wide significant effect on expression of one or more transcripts in the linkage disequilibrium (LD) block around the SNP. These associations implicate antigen presentation and T-cell activation as a shared mechanism of disease pathogenesis and underscore the utility of cross-disease meta-analysis for identification of genetic risk factors with pleiotropic effects between two clinically distinct diseases.
Both TNFAIP3 (A20, at the protein level) and REL are key mediators in the nuclear factor kappa B (NF-kappaB) inflammatory signalling pathway. For the first time, a role for primary heritable variation in this important biological pathway predisposing to coeliac disease has been identified. Currently, the HLA risk factors and the 10 established non-HLA risk factors explain approximately 40% of the heritability of coeliac disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.