Entropy-based (M N ) moment closures for kinetic equations are defined by a constrained optimization problem that must be solved at every point in a space-time mesh, making it important to solve these optimization problems accurately and efficiently. We present a complete and practical numerical algorithm for solving the dual problem in one-dimensional, slab geometries. The closure is only well-defined on the set of moments that are realizable from a positive underlying distribution, and as the boundary of the realizable set is approached, the dual problem becomes increasingly difficult to solve due to ill-conditioning of the Hessian matrix. To improve the condition number of the Hessian, we advocate the use of a change of polynomial basis, defined using a Cholesky factorization of the Hessian, that permits solution of problems nearer to the boundary of the realizable set. We also advocate a fixed quadrature scheme, rather than adaptive quadrature, since the latter introduces unnecessary expense and changes the computationally realizable set as the quadrature changes. For very ill-conditioned problems, we use regularization to make the optimization algorithm robust. We design a manufactured solution and demonstrate that the adaptive-basis optimization algorithm reduces the need for regularization. This is important since we also show that regularization slows, and even stalls, convergence of the numerical simulation when refining the space-time mesh. We also simulate two well-known benchmark problems. There we find that our adaptive-basis, fixed-quadrature algorithm uses less regularization than alternatives, although differences in the resulting numerical simulations are more sensitive to the regularization strategy than to the choice of basis.
We implement a high-order numerical scheme for the entropy-based moment closure, the so-called M N model, for linear kinetic equations in slab geometry. A discontinuous Galerkin (DG) scheme in space along with a strong-stability preserving Runge-Kutta time integrator is a natural choice to achieve a third-order scheme, but so far, the challenge for such a scheme in this context is the implementation of a linear scaling limiter when the numerical solution leaves the set of realizable moments (that is, those moments associated with a positive underlying distribution). The difficulty for such a limiter lies in the computation of the intersection of a ray with the set of realizable moments. We avoid this computation by using quadrature to generate a convex polytope which approximates this set. The halfspace representation of this polytope is used to compute an approximation of the required intersection straightforwardly, and with this limiter in hand, the rest of the DG scheme is constructed using standard techniques. We consider the resulting numerical scheme on a new manufactured solution and standard benchmark problems for both traditional M N models and the so-called mixed-moment models. The manufactured solution allows us to observe the expected convergence rates and explore the effects of the regularization in the optimization.
We study mixed-moment models (full zeroth moment, half higher moments) for a Fokker-Planck equation in one space dimension. Mixed-moment minimum-entropy models are known to overcome the zero net-flux problem of full-moment minimum entropy Mn models. Realizability theory for these mixed moments of arbitrary order is derived, as well as a new closure, which we refer to as Kershaw closures. They provide non-negative distribution functions combined with an analytical closure. Numerical tests are performed with standard first-order finite volume schemes and compared with a finite-difference Fokker-Planck scheme.
Using standard intrusive techniques when solving hyperbolic conservation laws with uncertainties can lead to oscillatory solutions as well as nonhyperbolic moment systems. The Intrusive Polynomial Moment (IPM) method ensures hyperbolicity of the moment system while restricting oscillatory over-and undershoots to specified bounds. In this contribution, we derive a second-order discretization of the IPM moment system which fulfills the maximum principle. This task is carried out by investigating violations of the specified bounds due to the errors from the numerical optimization required by the scheme. This analysis gives weaker conditions on the entropy that is used, allowing the choice of an entropy which enables choosing the exact minimal and maximal value of the initial condition as bounds. Solutions calculated with the derived scheme are nonoscillatory while fulfilling the maximum principle. The second-order accuracy of our scheme leads to significantly reduced numerical costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.