The hydrolysis of sucrose by cell-wall invertases (cwINV) and the subsequent import of hexoses into target cells appears to be crucial for appropriate metabolism, growth and differentiation in plants. Hexose uptake from the apoplast is catalysed by monosaccharide/H+ symporters (Sugar Transport Proteins or STPs), which have the potential to sense sugars. Import of extracellular hexoses may generate signals to orchestrate cellular activities, or simply feed metabolic pathways distinct from those fed by sucrose. It is predicted that Arabidopsis has six cwINV genes and at least 14 STP genes. These genes show different spatial and temporal patterns of expression, and several knock-out mutants have been isolated for analysis. AtSTP1 transports glucose, galactose, xylose, and mannose, but not fructose. It accounts for the majority of the AtSTP activity in vegetative tissues and its activity is markedly repressed by treatment with exogenous sugars. These observations are consistent with a role in the retrieval of cell-wall-derived sugars, for example, during carbohydrate limitation or cell expansion. The AtSTP1 gene is also expressed in developing seeds, where it might be responsible for the uptake of glucose derived from imported sucrose. The large number of AtcwINV and AtSTP genes, together with complex patterns of expression for each, and the possibility that each protein may have more than one physiological function, provides the plant with the potential for a multiplicity of patterns of monosaccharide utilization to direct growth and differentiation or to respond flexibly to changing environmental conditions.
The aim of this study was to investigate the in vivo properties and function of the high-affinity monosaccharide/proton symporter AtSTP1 of Arabidopsis. We isolated an Atstp1 knock-out mutant and found that this plant grows and develops normally. The AtSTP1 gene is expressed in germinating seeds and seedlings, with AtSTP1 activity found mainly in the seedling root. The rate of uptake of [(14)C]-3-O-methylglucose and [(14)C]-D-glucose is 60% less in Atstp1 seedlings than in the wild type, showing that AtSTP1 is the major monosaccharide transporter in Arabidopsis seedlings. Transport of D-galactose and D-mannose is also up to 60% less in Atstp1 seedlings compared to wild type, but transport of D-fructose, L-arabinose and sucrose is not reduced. Germination of Atstp1 seed shows reduced sensitivity to D-mannose, demonstrating that AtSTP1 is active before germination. Atstp1 seedlings grow effectively on concentrations of D-galactose that inhibit wild-type growth, even at up to 100 mM D-galactose, indicating that active transport by AtSTP1 plays a major role at very high concentrations of exogenous sugar. These findings provide insight into the physiological function of AtSTP1 and clearly establish its importance in the uptake of extracellular sugars by the embryo and in seedlings.
The aim of this study was to investigate the in vivo properties and function of the high-af®nity monosaccharide/proton symporter AtSTP1 of Arabidopsis. We isolated an Atstp1 knock-out mutant and found that this plant grows and develops normally. The AtSTP1 gene is expressed in germinating seeds and seedlings, with AtSTP1 activity found mainly in the seedling root. The rate of uptake of [ 14 C]-3-Omethylglucose and [ 14 C]-D-glucose is 60% less in Atstp1 seedlings than in the wild type, showing that AtSTP1 is the major monosaccharide transporter in Arabidopsis seedlings. Transport of D-galactose and D-mannose is also up to 60% less in Atstp1 seedlings compared to wild type, but transport of D-fructose, L-arabinose and sucrose is not reduced. Germination of Atstp1 seed shows reduced sensitivity to D-mannose, demonstrating that AtSTP1 is active before germination. Atstp1 seedlings grow effectively on concentrations of D-galactose that inhibit wild-type growth, even at up to 100 mM D-galactose, indicating that active transport by AtSTP1 plays a major role at very high concentrations of exogenous sugar. These ®ndings provide insight into the physiological function of AtSTP1 and clearly establish its importance in the uptake of extracellular sugars by the embryo and in seedlings.
Feruloyl and p-coumaroyl groups in spinach cell walls (CW) were labelled using [14C]cinnamic acid and fed to rats. In the caecum and colon, ferulic acid (FA) and p-coumaric acid (PCA) were released from the CW. Few feruloyl or coumaroyl groups remained in the CW to be excreted in faeces, and thus the presence of simple phenol-sugar esters provided little protection of the polysaccharides to enzymic attack. Some oxidatively coupled phenols were also released but a portion remained in the CW. The oxidatively coupled phenols accumulated in the gut whereas the FA and PCA were absorbed by the rat. Thus enzyme-resistant fragments, containing oxidatively coupled phenols (and possibly sugar residues), may survive microbial attack by rat intestinal bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.