Tumour necrosis factor-alpha (TNF-alpha) is a potent pro-inflammatory and immunomodulatory cytokine implicated in inflammatory conditions such as rheumatoid arthritis, Crohn's disease, multiple sclerosis and the cachexia associated with cancer or human immunodeficiency virus infection. TNF-alpha is initially expressed as a 233-amino-acid membrane-anchored precursor which is proteolytically processed to yield the mature, 157-amino-acid cytokine. The processing enzyme(s) which cleave TNF-alpha are unknown. Here we show that the release of mature TNF-alpha from leukocytes cultured in vitro is specifically prevented by synthetic hydroxamic acid-based metalloproteinase inhibitors, which also prevent the release of TNF-alpha into the circulation of endotoxin challenged rats. A recombinant, truncated TNF-alpha precursor is cleaved to biologically active, mature TNF-alpha by several matrix metalloproteinase enzymes. These results indicate that processing of the TNF-alpha precursor is dependent on at least one matrix metalloproteinase-like enzyme, inhibition of which represents a novel therapeutic mechanism for interfering with TNF-alpha production.
Improved understanding of the role of inflammation in tendon disease is required to facilitate therapeutic target discovery. We studied supraspinatus tendons from patients experiencing pain before and after surgical subacromial decompression treatment. Tendons were classified as having early, intermediate or advanced disease and inflammation was characterized through activation of pathways mediated by Interferon, NF-κB, glucocorticoid receptor and STAT-6. Inflammation signatures revealed expression of genes and proteins induced by Interferon and NF-κB in early stage disease and genes and proteins induced by STAT-6 and glucocorticoid receptor activation in advanced stage disease. The pro-resolving proteins FPR2/ALX and ChemR23 were increased in early stage disease compared to intermediate-advanced stage disease. Patients who were pain-free post-treatment had tendons with increased expression of CD206 and ALOX15 mRNA compared to tendons from patients who continued to experience pain post-treatment, suggesting that these genes and their pathways may moderate tendon pain. Stromal cells from diseased tendons cultured in vitro showed increased expression of NF-κB and Interferon target genes after treatment with lipopolysaccharide or IFNγ compared to stromal cells derived from healthy tendons. We identified 15-epi Lipoxin A 4 , a stable lipoxin metabolite derived from aspirin treatment, as potentially beneficial in the resolution of tendon inflammation. *Corresponding author Stephanie G Dakin, stephanie.dakin@ndorms.ox.ac.uk Corresponding author telephone +44 (0)1865 227374. Author contributions: SGD performed all experiments and wrote the manuscript with input from all co-authors. SGD, AJC and FOM designed the study. FOM, UO and GW provided qPCR reagents and FOM and UO performed array analysis. FOM and GW provided human macrophages for co-culture experiments. CY facilitated confocal image acquisition. BD, KW, BW, LR and AJC facilitated procurement and collection of healthy and diseased shoulder tendons from patients.
BackgroundRecent investigation of human tissue and cells from positional tendons such as the rotator cuff has clarified the importance of inflammation in the development and progression of tendon disease. These mechanisms remain poorly understood in disease of energy-storing tendons such as the Achilles. Using tissue biopsies from patients, we investigated if inflammation is a feature of Achilles tendinopathy and rupture.MethodsWe studied Achilles tendon biopsies from symptomatic patients with either mid-portion tendinopathy or rupture for evidence of abnormal inflammatory signatures. Tendon-derived stromal cells from healthy hamstring and diseased Achilles were cultured to determine the effects of cytokine treatment on expression of inflammatory markers.ResultsTendinopathic and ruptured Achilles highly expressed CD14+ and CD68+ cells and showed a complex inflammation signature, involving NF-κB, interferon and STAT-6 activation pathways. Interferon markers IRF1 and IRF5 were highly expressed in tendinopathic samples. Achilles ruptures showed increased PTGS2 and interleukin-8 expression. Tendinopathic and ruptured Achilles tissues expressed stromal fibroblast activation markers podoplanin and CD106. Tendon cells isolated from diseased Achilles showed increased expression of pro-inflammatory and stromal fibroblast activation markers after cytokine stimulation compared with healthy hamstring tendon cells.ConclusionsTissue and cells derived from tendinopathic and ruptured Achilles tendons show evidence of chronic (non-resolving) inflammation. The energy-storing Achilles shares common cellular and molecular inflammatory mechanisms with functionally distinct rotator cuff positional tendons. Differences seen in the profile of ruptured Achilles are likely to be attributable to a superimposed phase of acute inflammation and neo-vascularisation. Strategies that target chronic inflammation are of potential therapeutic benefit for patients with Achilles tendon disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.