Pedigree reconstruction using molecular markers enables efficient management of inbreeding in open-pollinated breeding strategies, replacing expensive and time-consuming controlled pollination. This is particularly useful in preferentially outcrossed, insect pollinated Eucalypts known to suffer considerable inbreeding depression from related matings. A single nucleotide polymorphism (SNP) marker panel consisting of 106 markers was selected for pedigree reconstruction from the recently developed high-density Eucalyptus Infinium SNP chip (EuCHIP60K). The performance of this SNP panel for pedigree reconstruction in open-pollinated progenies of two Eucalyptus nitens seed orchards was compared with that of two microsatellite panels with 13 and 16 markers respectively. The SNP marker panel out-performed one of the microsatellite panels in the resolution power to reconstruct pedigrees and out-performed both panels with respect to data quality. Parentage of all but one offspring in each clonal seed orchard was correctly matched to the expected seed parent using the SNP marker panel, whereas parentage assignment to less than a third of the expected seed parents were supported using the 13-microsatellite panel. The 16-microsatellite panel supported all but one of the recorded seed parents, one better than the SNP panel, although there was still a considerable level of missing and inconsistent data. SNP marker data was considerably superior to microsatellite data in accuracy, reproducibility and robustness. Although microsatellites and SNPs data provide equivalent resolution for pedigree reconstruction, microsatellite analysis requires more time and experience to deal with the uncertainties of allele calling and faces challenges for data transferability across labs and over time. While microsatellite analysis will continue to be useful for some breeding tasks due to the high information content, existing infrastructure and low operating costs, the multi-species SNP resource available with the EuCHIP60k, opens a whole new array of opportunities for high-throughput, genome-wide or targeted genotyping in species of Eucalyptus.
Open-pollinated (OP) mating is frequently used in forest tree breeding due to the relative temporal and financial efficiency of the approach. The trade-off is the lower precision of the estimated genetic parameters. Pedigree/sib-ship reconstruction has been proven as a tool to correct and complete pedigree information and to improve the precision of genetic parameter estimates. Our study analyzed an advanced generation Eucalyptus population from an OP breeding program using single-step genetic evaluation. The relationship matrix inferred from sib-ship reconstruction was used to rescale the marker-based relationship matrix (G matrix). This was compared with a second scenario that used rescaling based on the documented pedigree. The proposed single-step model performed better with respect to both model fit and the theoretical accuracy of breeding values. We found that the prediction accuracy was superior when using the pedigree information only when compared with using a combination of the pedigree and genomic information. This pattern appeared to be mainly a result of accumulated unrecognized relatedness over several breeding cycles, resulting in breeding values being shrunk toward the population mean. Using biased, pedigree-based breeding values as the base with which to correlate predicted GEBVs, resulted in the underestimation of prediction accuracies. Using breeding values estimated on the basis of sib-ship reconstruction resulted in increased prediction accuracies of the genotyped individuals. Therefore, selection of the correct base for estimation of prediction accuracy is critical. The beneficial impact of sib-ship reconstruction using G matrix rescaling was profound, especially in traits with inbreeding depression, such as stem diameter.
Clonal trials of Pinus radiata D. Don (radiata pine), representing two populations (or breeds), one selected for growth and form (GF) and the other selected for high wood density as well as growth and form (HD), were replicated on two low-altitude New Zealand sites: Tarawera (pumice soil, 38°08′S) and Woodhill (coastal dune, 36°42′S). The GF material comprised 33 pair-crosses (19 parents) × 10 clones, and the HD material comprised 19 single-pair crosses (35 parents) × 10 clones, with six ramets per clone per site. Diameter (DBH), two tree-form variables, and needle retention (NRA) were assessed 8 years after planting, and wood density (DEN), acoustic velocity, and collapse were assessed 9 years after planting. The site differences were generally expressed more strongly in the GF population. Estimated genetic parameters were mostly similar for the two breeds, except that genotypic correlation between DBH and DEN was apparently zero in the HD population. Estimated broad-sense heritabilities (H2) were generally markedly higher than narrow-sense heritability estimates (h2), except with DEN. Estimated between-site type-B clonal genotypic correlations were generally high (>0.8) for wood properties. Overall, DBH showed adverse genetic correlations with wood properties. The Elite/Breed strategy appeared to be helpful in combating adverse genetic correlations.
Background: Red needle cast (RNC) is a new needle disease of Pinus radiata D. Don (radiata pine) in New Zealand that is causing significant, but as-yet un-quantified, loss of growth and productivity. This foliar disease has recently been attributed to the infection of the needles by Phytophthora pluvialis Reeser, Sutton & E Hansen. Genetic improvement is seen as a possible solution to mitigate the effects of this needle disease on forest productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.