Background Globally the population of older adults is increasing. It is estimated that by 2050 the number of adults over the age of 60 will represent over 21% of the world’s population. Frailty is a clinical condition associated with ageing resulting in an increase in adverse outcomes. It is considered the greatest challenge facing an ageing population affecting an estimated 16% of community-dwelling populations worldwide. Aim The aim of this systematic review is to explore how wearable sensors have been used to assess frailty in older adults. Method Electronic databases Medline, Science Direct, Scopus, and CINAHL were systematically searched March 2020 and November 2020. A search constraint of articles published in English, between January 2010 and November 2020 was applied. Papers included were primary observational studies involving; older adults aged > 60 years, used a wearable sensor to provide quantitative measurements of physical activity (PA) or mobility and a measure of frailty. Studies were excluded if they used non-wearable sensors for outcome measurement or outlined an algorithm or application development exclusively. The methodological quality of the selected studies was assessed using the Appraisal Tool for Cross-sectional Studies (AXIS). Results Twenty-nine studies examining the use of wearable sensors to assess and discriminate between stages of frailty in older adults were included. Thirteen different body-worn sensors were used in eight different body-locations. Participants were community-dwelling older adults. Studies were performed in home, laboratory or hospital settings. Postural transitions, number of steps, percentage of time in PA and intensity of PA together were the most frequently measured parameters followed closely by gait speed. All but one study demonstrated an association between PA and level of frailty. All reports of gait speed indicate correlation with frailty. Conclusions Wearable sensors have been successfully used to evaluate frailty in older adults. Further research is needed to identify a feasible, user-friendly device and body-location that can be used to identify signs of pre-frailty in community-dwelling older adults. This would facilitate early identification and targeted intervention to reduce the burden of frailty in an ageing population.
One of the problems facing an ageing population is functional decline associated with reduced levels of physical activity (PA). Traditionally researcher or clinician input is necessary to capture parameters of gait or PA. Enabling older adults to monitor their activity independently could raise their awareness of their activitiy levels, promote self-care and potentially mitigate the risks associated with ageing. The ankle is accepted as the optimum position for sensor placement to capture parameters of gait however, the waist is proposed as a more accessible body-location for older adults. This study aimed to compare step-count measurements obtained from a single inertial sensor positioned at the ankle and at the waist to that of a criterion measure of step-count, and to compare gait parameters obtained from the sensors positioned at the two different body-locations. Step-count from the waist-mounted inertial sensor was compared with that from the ankle-mounted sensor, and with a criterion measure of direct observation in healthy young and healthy older adults during a three-minute treadmill walk test. Parameters of gait obtained from the sensors at both body-locations were also compared. Results indicated there was a strong positive correlation between step-count measured by both the ankle and waist sensors and the criterion measure, and between ankle and waist sensor step-count, mean step time and mean stride time (r = .802–1.0). There was a moderate correlation between the step time variability measures at the waist and ankle (r = .405). This study demonstrates that a single sensor positioned at the waist is an appropriate method for the capture of important measures of gait and physical activity among older adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.