The objective of the study was to evaluate the expression patterns of prostaglandin F2alpha (PGF), prostaglandin E2 (PGE), PGF receptor (FP), PGE receptors (EP2 and EP4), prostaglandin‐endoperoxide synthase 2 (PTGS2) and prostaglandin synthases (PGFS and PGES) in corpora lutea (CL) during experimentally induced luteolysis in cow. The Fleckvieh cows in the mid‐luteal phase (days 8–12, control group) were injected with cloprostenol (PGF analogue), and CL were collected by transvaginal ovariectomy before (days 8–12, control group) and at 0.5, 2, 4, 12, 24, 48 and 64 h after PGF application (n = 5 per group). The mRNA expression was determined by RT‐qPCR, the hormone concentrations by enzyme immunoassay and localization by immunohistochemistry. PTGS2 gene expression increased significantly 2 h after PGF application, followed by continuous and significant downregulation afterwards. The PGF tissue concentration increased significantly just after PGF injection and again during structural luteolysis (after 12 h), whereas PGE concentration significantly decreased during structural luteolysis. The FP receptor mRNA decreased significantly at 2 h and again at 12 h after PGF. In contrast, EP4 receptor mRNA increased significantly just after the PGF application (0.5 h). The immunostaining of PGES and PTGS2 on day 15–17 shows numerous positive luteal cells, followed by lower activity afterwards on day 18 (luteolysis). In conclusion, the changes of examined prostaglandin family members in CL tissue after PGF application may be key components of the local mechanisms regulating the cascade of actions leading to functional and subsequent structural luteolysis in the bovine ovary.
In this review, we discuss the development pipeline for transcriptional biomarkers in molecular diagnostics and stress the importance of a reliable gene transcript quantification strategy. Hence, a further focus is put on the MIQE guidelines and how to adapt them for biomarker discovery, from signature validation up to routine diagnostic applications. First, the advantages and pitfalls of the holistic RNA sequencing for biomarker development will be described to establish a candidate biomarker signature. Sequentially, the RT-qPCR confirmation process will be discussed to validate the discovered biomarker signature. Examples for the successful application of RT-qPCR as a fast and reproducible quantification method in routinemolecular diagnostics are provided. Based on the MIQE guidelines, the importance of “key steps” in RT-qPCR is accurately described, e.g., reverse transcription, proper reference gene selection and, finally, the application of automated RT-qPCR data analysis software. In conclusion, RT-qPCR proves to be a valuable tool in the establishment of a disease-specific transcriptional biomarker signature and will have a great future in molecular diagnostics or personalized medicine.
This study aimed to determine the gene expression of different local novel adipokines, such as vaspin, adiponectin, visfatin, and resistin, and their known receptors, namely, heat shock 70 protein 5, adiponectin receptor 1, and adiponectin receptor 2, in the bovine corpus luteum (CL) during different phases of the estrous cycle (on days 1–2, 3–4, 5–7, 8–12, 13–18, >18) and pregnancy (at months 1–2, 3–4, 5–7, >7). The mRNA expression was measured by reverse transcription polymerase chain reaction (RT-qPCR). The mRNA expression levels were normalized to the geometric mean of all three constantly expressed reference genes (cyclophilin A, ubiquitin, ubiquitin C). Our findings suggest that adipokines are expressed and present in all investigated groups, and are specifically up- or downregulated during the estrus cycle and during pregnancy. Vaspin and adiponectin levels were upregulated in the middle and late cycle stages. Resistin was abundant during the CL regression stage and in the first months of pregnancy. The specific expression of adipokine receptors indicates their involvement in the local mechanisms that regulate CL function. Further investigations are required to elucidate the regulative mechanisms underlying the different local effects of adipokines on the ovarian physiology of cows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.