4-Phosphoryloxy-N,N-dimethyltryptamine (psilocybin) is a naturally occurring tertiary amine found in many mushroom species. Psilocybin is a prodrug for 4-hydroxy-N,N-dimethyltryptamine (psilocin), which induces psychedelic effects via agonist activity at the serotonin (5-HT) 2A receptor (5-HT2A). Several other 4-position ring-substituted tryptamines are present in psilocybin-containing mushrooms, including the secondary amine 4-phosphoryloxy-N-methyltryptamine (baeocystin) and the quaternary ammonium 4-phosphoryloxy-N,N,N-trimethyltryptamine (aeruginascin), but these compounds are not well studied. Here, we investigated the structure–activity relationships for psilocybin, baeocystin, and aeruginascin, as compared to their 4-acetoxy and 4-hydroxy analogues, using in vitro and in vivo methods. Broad receptor screening using radioligand binding assays in transfected cells revealed that secondary and tertiary tryptamines with either 4-acetoxy or 4-hydroxy substitutions display nanomolar affinity for most human 5-HT receptor subtypes tested, including the 5-HT2A and the serotonin 1A receptor (5-HT1A). The same compounds displayed affinity for 5-HT2A and 5-HT1A in mouse brain tissue in vitro and exhibited agonist efficacy in assays examining 5-HT2A-mediated calcium mobilization and β-arrestin 2 recruitment. In mouse experiments, only the tertiary amines psilocin, psilocybin, and 4-acetoxy-N,N-dimethyltryptamine (psilacetin) induced head twitch responses (ED50 0.11–0.29 mg/kg) indicative of psychedelic-like activity. Head twitches were blocked by 5-HT2A antagonist pretreatment, supporting 5-HT2A involvement. Both secondary and tertiary amines decreased body temperature and locomotor activity at higher doses, the effects of which were blocked by 5-HT1A antagonist pretreatment. Across all assays, the pharmacological effects of 4-acetoxy and 4-hydroxy compounds were similar, and these compounds were more potent than their 4-phosphoryloxy counterparts. Importantly, psilacetin appears to be a prodrug for psilocin that displays substantial serotonin receptor activities of its own.
Novel synthetic opioids continue to emerge on recreational drug markets worldwide. In response to legislative bans on fentanyl analogues, non-fentanyl structural templates, such as 2-benzylbenzimidazoles ('nitazenes'), are being exploited to create new -opioid receptor (MOR) agonists. Here, we pharmacologically characterize an emerging cyclic analogue of etonitazene, called N-pyrrolidino etonitazene (etonitazepyne), using in vitro and in vivo methods. A series of analytically confirmed fatalities is described to complement preclinical findings. Radioligand binding assays in rat brain tissue revealed that N-pyrrolidino etonitazene has high affinity for MOR (Ki=4.09 nM) over -opioid (Ki=959 nM) and -opioid (Ki=980 nM) receptors. In a MOR--arrestin2 activation assay, N-pyrrolidino etonitazene displayed high potency (EC50=0.348 nM), similar to etonitazene (EC50=0.360 nM), and largely exceeding the potencies of fentanyl (EC50=14.9 nM) and morphine (EC50=290 nM). When administered s.c. to male Sprague Dawley rats, N-pyrrolidino etonitazene induced opioid-like antinociceptive, cataleptic, and thermic effects. Its potency in the hot plate test (ED50=0.0017 mg/kg) was 10fold and 2,000-fold greater than fentanyl (ED50=0.0209 mg/kg) and morphine (ED50=3.940 mg/kg), respectively. Twenty-one overdose fatalities associated with N-pyrrolidino etonitazene were found to contain low blood concentrations of the drug (median=2.2 ng/mL), commonly in the context of polysubstance use. N-Pyrrolidino etonitazene was reported as a cause of death in at least two cases, demonstrating toxicity in humans. We demonstrate that N-pyrrolidino etonitazene is an extremely potent MOR agonist that is likely to present high risk to users. Continued vigilance is required to identify and characterize emergent 2benzylbenzimidazoles, and other non-fentanyl opioids, as they appear in the marketplace.
Synthetic cathinones are a class of new psychoactive substances that induce psychostimulant effects and pose risk for hospitalizations, overdose, and death. At the present time, derivatives of the synthetic cathinone, methylone, are being confiscated in nonmedical (i.e., recreational) drug markets worldwide. In particular, eutylone is a newly emerging methylone analog that possesses ethyl groups at the α-carbon and amine positions. Little information is available about the pharmacological effects of eutylone, but based on its structure, we surmised that the compound interacts with monoamine transporters in the brain. To test this hypothesis, we compared the effects of eutylone and its structural isomers, dibutylone and pentylone, using in vitro transporter assays in rat brain synaptosomes and in vivo locomotor activity assessments in mice. All drugs displayed dose-related inhibition of [ 3 H]neurotransmitter uptake at dopamine transporters (DAT) and norepinephrine transporters (NET), but effects at DAT were 10-fold more potent (IC 50 = 120 nM). Eutylone and pentylone inhibited uptake at serotonin transporters (SERT), while dibutylone did not. Additionally, eutylone and pentylone displayed weak partial releasing actions at SERT which achieved 50% of maximal response. All drugs stimulated dose-related locomotion in mice, and eutylone was most potent and efficacious in this regard (ED 50 = 2 mg/kg, sc). Our results demonstrate that eutylone is a hybrid transporter compound with uptake inhibition properties at DAT and NET but substrate activity at SERT. The effects of eutylone are similar to those produced by pentylone, which suggests that eutylone will exhibit abuse liability and pose risks for psychostimulant side-effects in human users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.