A thrackle (resp. generalized thrackle) is a drawing of a graph in which each pair of edges meets precisely once (resp. an odd number of times). For a graph with n vertices and m edges, we show that, for drawings in the plane, m ≤ 3 2 (n − 1) for thrackles, while m ≤ 2n − 2 for generalized thrackles. This improves theorems of Lovász, Pach, and Szegedy. The paper also examines thrackles in the more general setting of drawings on closed surfaces. The main result is: a bipartite graph G can be drawn as a generalized thrackle on a closed orientable connected surface if and only if G can be embedded in that surface.
C.F. Gauss gave a necessary condition for a word to be the intersection word of a closed normal planar curve and he gave an example which showed that his condition was not sufficient. M. Dehn provided a solution to the planarity problem [3] and subsequently, different solutions have been given by a number of authors (see [9]). However, all of these solutions are algorithmic in nature. As B. Grünbaum remarked in [7], “they are of the same aesthetically unpleasing character as MacLane’s [1937] criterion for planarity of graphs. A characterization of Gauss codes in the spirit of the Kuratowski criterion for planarity of graphs is still missing”. In this paper we use the work of J. Scott Carter [2] to give a necessary and sufficient condition for planarity of signed Gauss words which is analogous to Gauss’s original condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.