Carrion insect succession studies have historically used repeated sampling of single or a few carcasses to produce data, either weighing the carcasses, removing a qualitative subsample of the fauna present, or both, on every visit over the course of decomposition and succession. This study, conducted in a set of related experimental hypotheses with two trials in a single season, investigated the effect that repeated sampling has on insect succession, determined by the number of taxa collected on each visit and by community composition. Each trial lasted at least 21 days, with daily visits on the first 14 days. Rat carcasses used in this study were all placed in the field on the same day, but then either sampled qualitatively on every visit (similar to most succession studies) or ignored until a given day of succession, when they were sampled qualitatively (a subsample) and then destructively sampled in their entirety. Carcasses sampled on every visit were in two groups: those from which only a sample of the fauna was taken and those from which a sample of fauna was taken and the carcass was weighed for biomass determination. Of the carcasses visited only once, the number of taxa in subsamples was compared to the actual number of taxa present when the carcass was destructively sampled to determine if the subsamples adequately represented the total carcass fauna. Data from the qualitative subsamples of those carcasses visited only once were also compared to data collected from carcasses that were sampled on every visit to investigate the effect of the repeated sampling. A total of 39 taxa were collected from carcasses during the study and the component taxa are discussed individually in relation to their role in succession. Number of taxa differed on only one visit between the qualitative subsamples and the actual number of taxa present, primarily because the organisms missed by the qualitative sampling were cryptic (hidden deep within body cavities) or rare (only represented by very few specimens). There were no differences discovered between number of taxa in qualitative subsamples from carcasses sampled repeatedly (with or without biomass determinations) and those sampled only a single time. Community composition differed considerably in later stages of decomposition, with disparate communities due primarily to small numbers of rare taxa. These results indicate that the methods used historically for community composition determination in experimental forensic entomology are generally adequate.
Fire ants (Solenopsis spp.) have increasingly been reported from carrion in the southeastern United States and are now a part of the normal succession community. There have been previous observations of these ants altering carrion and preying on other carrion-attendant fauna; however, the overall effects of these activities on carrion decomposition rates, community composition, and blow fly larval development are poorly understood. Alteration of these ecological processes by fire ants could affect the forensic interpretation of entomological data. We conducted a study in Mississippi and Florida whereby portions of the succession fauna were excluded from access to pig carrion to study the relative effects of fire ants and blow flies on carrion decomposition and succession: a control with all fauna having access, a second treatment where fire ants and other geophilic taxa were excluded, and a third treatment in which blow flies and other large organisms were excluded. Fire ants inflicted lesions in the carrion, buried portions that touched the ground, and preyed on some members of the succession fauna. Their exclusion did not affect carrion decomposition rates that were measured but slightly affected the overall carrion community, and strongly affected the oviposition and development of blow flies. Despite the presence of fire ants early in the control, blow flies were eventually able to overcome predation of eggs and larvae, continue colonization, and complete development; however, the delay in the colonization of blow flies on carrion could affect the determination of postmortem intervals when development rates of blow flies are considered in the calculation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.