A pH-driven DNA nanomachine based on the human α-thrombin binding aptamer was designed for the specific catch-and-release of human α-thrombin at neutral and acidic pH, respectively. In neutral conditions, the thrombin aptamer component of the nanomachine is exposed and exists in the G-quadruplex conformation required to bind to the target protein. At slightly acidic pH, the polyadenine tail of the nanomachine becomes partially protonated and A+(anti)•G(syn) mispairing results in a conformational change, causing the target protein to be released. Förster resonance energy transfer (FRET) was used to monitor conformational switching over multiple pH cycles. Electrophoretic mobility shift assay (EMSA) and fluorescence anisotropy were used to show pH dependent protein binding and release by the nanomachine. This approach could be applied generally to existing G-rich aptamers to develop novel biosensors, theranostics, and nanoswitches.
We report here our preliminary investigations on the mechanism of alpha-TTP-mediated ligand transfer as assessed using fluorescence resonance energy transfer (FRET) assays. These assays monitor the movement of the model alpha-tocopherol fluorescent derivative ((R)-2,5,7,8-tetramethyl-chroman-2-[9-(7-nitro-benzo[1,2,5]oxadiazol-4-yl amino)-nonyl]-chroman-6-ol; NBD-Toc) from protein to acceptor vesicles containing the fluorescence quencher TRITC-PE. We have found that alpha-TTP utilizes a collisional mechanism of ligand transfer requiring direct protein-membrane contact, that rates of ligand transfer are greater to more highly curved lipid vesicles, and that such rates are insensitive to the presence of anionic phospholipids in the acceptor membrane. These results point to hydrophobic features of alpha-TTP dominating the binding energy between protein and membrane.
The use of different expression systems to produce the same recombinant human protein can result in expression-dependent chemical modifications (CMs) leading to variability of structure, stability and immunogenicity. Of particular interest are recombinant human proteins expressed in plant-based systems, which have shown particularly high CM variability. In studies presented here, recombinant human serum albumins (rHSA) produced in Oryza sativa (Asian rice) (OsrHSA) from a number of suppliers have been extensively characterized and compared to plasma-derived HSA (pHSA) and rHSA expressed in yeast (Pichia pastoris and Saccharomyces cerevisiae). The heterogeneity of each sample was evaluated using size exclusion chromatography (SEC), reversed-phase high-performance liquid chromatography (RP-HPLC) and capillary electrophoresis (CE). Modifications of the samples were identified by liquid chromatography-mass spectrometry (LC-MS). The secondary and tertiary structure of the albumin samples were assessed with far U/V circular dichroism spectropolarimetry (far U/V CD) and fluorescence spectroscopy, respectively. Far U/V CD and fluorescence analyses were also used to assess thermal stability and drug binding. High molecular weight aggregates in OsrHSA samples were detected with SEC and supplier-to-supplier variability and, more critically, lot-to-lot variability in one manufactures supplied products were identified. LC-MS analysis identified a greater number of hexose-glycated arginine and lysine residues on OsrHSA compared to pHSA or rHSA expressed in yeast. This analysis also showed supplier-to-supplier and lot-to-lot variability in the degree of glycation at specific lysine and arginine residues for OsrHSA. Both the number of glycated residues and the degree of glycation correlated positively with the quantity of non-monomeric species and the chromatographic profiles of the samples. Tertiary structural changes were observed for most OsrHSA samples which correlated well with the degree of arginine/lysine glycation. The extensive glycation of OsrHSA from multiple suppliers may have further implications for the use of OsrHSA as a therapeutic product.
We have previously identified extensive glycation, bound fatty acids and increased quantities of protein aggregates in commercially available recombinant HSA (rHSA) expressed in Oryza sativa (Asian rice) (OsrHSA) when compared to rHSA from other expression systems. We propose these differences may alter some attributes of nanoparticles fabricated with OsrHSA, as studies have associated greater quantities of aggregates with increased nanoparticle diameters. To determine if this is the case, nanoparticles were fabricated with OsrHSA from various suppliers using ethanol desolvation and subsequent glutaraldehyde cross-linking. All nanoparticles fabricated with OsrHSA showed larger diameters of approximately 20 to 90nm than particles fabricated with either defatted bovine serum albumin (DF-BSA) (100.9 ± 2.8nm) or human plasma albumin (pHSA) (112.0 ± 4.0nm). It was hypothesized that the larger nanoparticle diameters were due to the presence of bound fatty acids and this was confirmed through defatting OsrHSA prior to particle fabrication which yielded particles with diameters similar to those fabricated with pHSA. For additional conformation, DF-BSA was incubated with dodecanoic acid prior to desolvation yielding particles with significantly larger diameters. Further studies showed the increased nanoparticle diameters were due to the bound fatty acids modulating electrostatic interactions between albumin nanoparticles during the desolvation and not changes in protein structure, stability or generation of additional albumin oligomers. Finally the presence of dodecanoic acid was shown to improve doxorubicin loading efficiency onto preformed albumin nanoparticles.
Previous studies have demonstrated that liposome-protein interactions can result in changes to the thermal stability of the protein. We utilized far-UV circular dichroism spectropolarimetry and fluorescence spectroscopy to investigate the interaction of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes with two recombinant human serum albumins (rHSA). We demonstrate that rHSA expressed in Oryza sativa (OsrHSA) has improved secondary structure thermal stability compared to rHSA expressed in Pichia pastoris (PprHSA). A similar stability profile was observed when comparing bovine serum albumin (BSA) and defatted bovine serum albumin (dfBSA), suggesting the presence of fatty acids may be responsible for the improved stability of OsrHSA. Addition of DPPC liposomes reduced the thermal stability of both OsrHSA and BSA, but not of PprHSA or dfBSA. DPPC liposomes may disrupt stabilizing native fatty acids on OsrHSA and BSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.