The immobilization of DNA to surfaces is required for numerous biosensing applications related to the capture of target DNA sequences, proteins, or small-molecule analytes from solution. For these applications to be successful, the chemistry of DNA immobilization should be efficient, reproducible, and stable and should allow the immobilized DNA to adopt a secondary structure required for association with its respective target molecule. To develop and characterize surface immobilization chemistry to meet this challenge, it is invaluable to have a quantitative, surface-sensitive method that can report the interfacial chemistry at each step, while also being capable of determining the structure, stability, and activity of the tethered DNA product. In this work, we develop a method to immobilize DNA to silica, glass, or other oxide surfaces by carrying out the reactions in porous silica particles. Due to the high specific surface area of porous silica, the local concentrations of surface-immobilized molecules within the particle are sufficiently high that interfacial chemistry can be monitored at each step of the process with confocal Raman microscopy, providing a unique capability to assess the molecular composition, structure, yield, and surface coverage of these reactions. We employ this methodology to investigate the steps for immobilizing thiolated-DNA to thiol-modified silica surfaces through sequential Michael addition reactions with the cross-linker 1,4-phenylene-bismaleimide. A key advantage of employing a phenyl-bismaleimide over a comparable alkyl coupling reagent is the efficient conversion of the initial phenyl-thiosuccinimide to a more stable succinamic acid thioether linkage. This transformation was confirmed by in situ Raman spectroscopy measurements, and the resulting succinamic acid thioether product exhibited greater than 95% retention of surface-immobilized DNA after 12 days at room temperature in aqueous buffer. Confocal Raman microscopy was also used to assess the conformational freedom of surface-immobilized DNA by comparing the structure of a 23-mer DNA hairpin sequence under duplex-forming and unfolding conditions. We find that the immobilized DNA hairpin can undergo reversible intramolecular duplex formation based on the changes in frequencies and intensities of the phosphate backbone and base-specific vibrational modes that are informative of the hybridization state of DNA.
Characterization of DNA at solid/liquid interfaces remains a challenge because most surface-sensitive techniques are unable to provide quantitative insight into the base content, length, or structure. Surface-enhanced Raman scattering measurements of DNA hybridization on plasmonic-metal substrates have been used to overcome small Raman-scattering cross-sections; however, surface-enhanced Raman spectroscopy measurements are not generally quantitative due to the fall-off in the scattering signal with the decay of the electric field enhancement from the surface, which also limits the length of oligonucleotides that can be investigated. In this work, we introduce an experimental methodology in which confocal Raman microscopy is used to characterize hybridization reactions of ssDNA immobilized at the solid/liquid interface of porous silica particles. By focusing the femtoliter confocal probe volume within a single porous particle, signal enhancement arises from the ∼1500-times greater surface area detected compared to a planar substrate. Because the porous support is a purely dielectric material, the scattering signal is independent of the proximity of the oligonucleotide to the silica surface. With this technique, we characterize a 19-mer capture strand and determine its hybridization efficiency with 9-mer and 16-mer target sequences from the scattering of a structurally insensitive phosphate-stretching mode. Changes in polarizability and frequency of scattering from DNA bases were observed, which are consistent with Watson–Crick base pairing. Quantification of base content from their duplex scattering intensities allows us to discriminate between hybridization of two target strands of equivalent length but with different recognition sequences. A duplex having a single-nucleotide polymorphism could be distinguished from hybridization of a fully complementary strand based on differences in base content and duplex conformation.
Immobilization of DNA to surfaces offers a convenient means of screening the binding affinity and selectivity of potential small-molecule therapeutic candidates. Unfortunately, most surface-sensitive methods for detecting these binding interactions are not informative of the molecular structure, information that is valuable for understanding the non-covalent interactions that stabilize binding. In this work, we report a method to meet this challenge by employing confocal Raman microscopy to quantify the association of a minor-groove-binding antimicrobial peptide, netropsin, to duplex DNA hairpin sequences immobilized on the interior surfaces of porous silica particles. To assess binding selectivity, particles functionalized with different sequences of DNA were equilibrated with solutions of 100 nM netropsin, and selective association was detected based on the presence of netropsin Raman scattering in the particles. The selectivity study revealed that netropsin binds to sequences of duplex DNA having AT-rich recognition regions. To quantify binding affinities, these AT-rich DNA sequences were equilibrated with a range of netropsin solution concentrations (1 to 100 nM). Raman scattering intensities of netropsin versus solution concentration were well described by single-binding-site Langmuir isotherms with nanomolar dissociation constants, in agreement with previous isothermal calorimetry and surface plasmon resonance results. Target sequence binding was accompanied with changes in netropsin and DNA vibrational modes consistent with the hydrogen bonding between the amide groups of netropsin and adenine and thymine bases in the DNA minor groove. The binding of netropsin to a control sequence lacking the AT-rich recognition region exhibited an affinity nearly 4 orders of magnitude weaker than found for the target sequences. The Raman spectrum of netropsin interacting with this control sequence showed broad pyrrole and amide mode vibrations at frequencies similar to a free solution, revealing less constrained conformations compared with the specific binding interactions observed with AT-rich sequences.
Phospholipid bilayers deposited on a variety of surfaces provide models for investigation of the lipid membrane structure and supports for biocompatible sensors. Hybrid-supported phospholipid bilayers (HSLBs) are stable membrane models for these investigations, typically prepared by self-assembly of a lipid monolayer over an n-alkane-modified surface. HSLBs have been prepared on nalkyl chain-modified silica and used for lipophilicity-based chromatographic separations. The structure of these hybrid bilayers differs from vesicle membranes where the lipid head group spacing is greater due to interdigitation of the lipid acyl chains with the underlying n-alkyl chains bound to the silica surface. This interdigitated structure exhibits a broader melting transition at a higher temperature due to strong interactions between the lipid acyl chains and the immobile n-alkyl chains bound to silica. In the present work, we seek to reduce the interactions between a lipid monolayer and its supporting substrate by self-assembly of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) on porous silica functionalized with nitrile-terminated surface ligands. The frequency of Raman scattering of the surface −CN stretching mode at the lipid−nitrile interface is consistent with an n-alkane-like environment and insensitive to lipid head group charge, indicating that the lipid acyl chains are in contact with the surface nitrile groups. The head group area of this lipid monolayer was determined from the within-particle phospholipid concentration and silica specific surface area and found to be 54 ± 2 Å 2 , equivalent to the head group area of a DMPC vesicle bilayer. The structure of these nitrile-supported phospholipid monolayers was characterized below and above their melting transition by confocal Raman microscopy and found to be nearly identical to DMPC vesicle bilayers. Their narrow gel-to-fluid-phase melting transition is equivalent to dispersed DMPC vesicles, suggesting that the acyl chain structure on the nitrile support mimics the outer leaflet structure of a vesicle membrane.
Phospholipid bilayers formed at solid−liquid interfaces have garnered interest as mimics of cell membranes to model association reactions of proteins with lipid bilayer-tethered ligands. Despite the importance of understanding how ligand density in a lipid bilayer impacts the protein−ligand association response, relating the ligand-modified lipid fraction to the absolute density of solution-accessible ligands in a lipid bilayer remains a challenge in interfacial quantitative analysis. In this work, confocal Raman microscopy is employed to quantify the association of anti-biotin IgG with a small fraction of biotinylated lipids dispersed in either gel-phase or liquidcrystalline supported lipid bilayers deposited on the interior surfaces of wide-pore silica surfaces. We examine the question of whether inter-leaflet lipid translocation contributes to the population of solution-accessible biotin ligands on the distal leaflet of a supported lipid bilayer by comparing their protein accumulation response with ligands dispersed in lipid monolayers on nitrile-derivatized silica surfaces. The binding of the antibody to biotin ligands dispersed in gel-phase bilayers exhibited an equivalent biotin coverage response as the accumulation of IgG onto gel-phase monolayers, indicating that gel-phase bilayer symmetry was preserved. This result contrasts with the ∼60% greater anti-biotin capture observed at fluid-phase bilayers compared to fluid-phase monolayers prepared at equivalent biotin fractions. This enhanced protein capture is attributed to biotin-capped lipids being transferred from the surface-associated proximal leaflet of the bilayer to the solution-exposed distal leaflet by the inter-leaflet exchange or lipid flip-flop, a facile process in fluid-phase supported lipid bilayers. The results suggest caution in interpreting the results of quantitative studies of protein binding to lipidtethered ligands dispersed in fluid-phase phospholipid bilayers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.