Transparent microelectrodes have received much attention from the biomedical community due to their unique advantages in concurrent crosstalk‐free electrical and optical interrogation of cell/tissue activity. Despite recent progress in constructing transparent microelectrodes, a major challenge is to simultaneously achieve desirable mechanical stretchability, optical transparency, electrochemical performance, and chemical stability for high‐fidelity, conformal, and stable interfacing with soft tissue/organ systems. To address this challenge, we have designed microelectrode arrays (MEAs) with gold‐coated silver nanowires (Au–Ag NWs) by combining technical advances in materials, fabrication, and mechanics. The Au coating improves both the chemical stability and electrochemical impedance of the Au–Ag NW microelectrodes with only slight changes in optical properties. The MEAs exhibit a high optical transparency >80% at 550 nm, a low normalized 1 kHz electrochemical impedance of 1.2–7.5 Ω cm2, stable chemical and electromechanical performance after exposure to oxygen plasma for 5 min, and cyclic stretching for 600 cycles at 20% strain, superior to other transparent microelectrode alternatives. The MEAs easily conform to curvilinear heart surfaces for colocalized electrophysiological and optical mapping of cardiac function. This work demonstrates that stretchable transparent metal nanowire MEAs are promising candidates for diverse biomedical science and engineering applications, particularly under mechanically dynamic conditions.
Optogenetic technology has enabled unparalleled insights into cellular and organ physiology by providing exquisite temporal and spatial control of biological pathways. Here, an optogenetic approach is presented for selective activation of the intrinsic cardiac nervous system in excised perfused mouse hearts. The breeding of transgenic mice that have selective expression of channelrhodopsin in either catecholaminergic or cholinergic neurons is described. An approach for perfusing hearts excised from those animals, recording the ECG to measure heart rate changes, and an illumination approach using a custom micro-LED light source to activate channelrhodopsin is explained. We have used these methods in ongoing studies of the kinetics of autonomic control of cardiac electrophysiology and contractility, demonstrating the proven utility of optogenetic technology to enable unparalleled spatiotemporal anatomic-functional probing of the intrinsic cardiac nervous system.
Genetic engineering and implantable bioelectronics have transformed investigations of cardiovascular physiology and disease. However, the two approaches have been difficult to combine in the same species: genetic engineering is applied primarily in rodents, and implantable devices generally require large animal models. We recently developed several miniature cardiac bioelectronic devices suitable for mice and rats to combine the advantages of molecular tools and implantable devices. Successful implementation of these device-enabled studies requires microsurgery approaches that reliably interface bioelectronics to the beating heart with minimal disruption to native physiology. This protocol describes how to perform an open thoracic surgical technique for epicardial implantation of novel wireless cardiac bioelectronic devices in adult rats and has significantly lower mortality than transvenous implantation approaches. In addition, we provide the methodology for a full biocompatibility assessment of the physiological response to the implanted device. The surgical implantation procedure takes about 40 minutes to complete for an experienced operator, and up to 8 surgeries can be completed in one day. Implanted pacemakers provide programmed electrical stimulation for over 1 month. This protocol has broad applications to enable fully conscious in vivo studies of cardiovascular physiology in transgenic rodent disease models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.