Many biological processes involve the mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Thus, the challenge of deciphering mTORC1-mediated functions during normal and pathological states in the central nervous system is challenging. Because mTORC1 is at the core of translation, we have investigated mTORC1 function in global and regional protein expression. Activation of mTORC1 has been generally regarded to promote translation. Few but recent works have shown that suppression of mTORC1 can also promote local protein synthesis. Moreover, excessive mTORC1 activation during diseased states represses basal and activity-induced protein synthesis. To determine the role of mTORC1 activation in protein expression, we have used an unbiased, large-scale proteomic approach. We provide evidence that a brief repression of mTORC1 activity in vivo by rapamycin has little effect globally, yet leads to a significant remodeling of synaptic proteins, in particular those proteins that reside in the postsynaptic density. We have also found that curtailing the activity of mTORC1 bidirectionally alters the expression of proteins associated with epilepsy, Alzheimer's disease, and autism spectrum disorder-neurological disorders that exhibit elevated mTORC1 activity. Through a protein-protein interaction network analysis, we have identified common proteins shared among these mTORC1-related diseases. One such protein is Parkinson protein 7, which has been implicated in Parkinson's disease, yet not associated with epilepsy, Alzheimers disease, or autism spectrum disorder. To verify our finding, we provide evidence that the protein expression of Parkinson protein 7, including new protein synthesis, is sensitive to mTORC1 inhibition. Using a mouse model of tuberous sclerosis complex, a disease that displays both epilepsy and autism spectrum disorder phenotypes and has overactive mTORC1 signaling, we show that Parkinson protein 7 protein is elevated in the dendrites and colocalizes with the postsynaptic marker postsynaptic density-95. Our work offers a comprehensive view of mTORC1 and its role in regulating regional protein expression in normal and diseased states. The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) 1 is a serine/threonine protein kinase that is highly Author contributions: FN and KRG designed research. FN and SN conducted experiments and analyzed data. SN performed bioinformatics analyses. ES and YM conducted mass spectrometry analyses. GS facilitated mass spectrometry experiments and provided technical advice. GAD and BVZ provided the virus and performed stereotaxic injections. FN, SN, and KRG wrote the manuscript. 1 The abbreviations used are: mTORC1, mechanistic/mammalian target of rapamycin complex 1; AD, Alzheimer's disease; AHA, azidohomoalanine; APP, amyloid precursor protein; ASD, autism spectrum disorder; BONCAT, bioorthogonal noncanonical amino acid
Background Peroxisome proliferator-activated receptor (PPAR) agonists reduce voluntary ethanol consumption in rat models and are promising therapeutics in the treatment of drug addictions. We studied the effects of different classes of PPAR agonists on chronic ethanol intake and preference in mice with a genetic predisposition for high alcohol consumption and then examined human genome wide association data for polymorphisms in PPAR genes in alcohol-dependent subjects. Methods Two different behavioral tests were used to measure intake of 15% ethanol in C57BL/6J male mice: 24-hour two-bottle choice and limited access (3-hour) two-bottle choice, drinking in the dark. We measured the effects of pioglitazone (10 and 30 mg/kg), fenofibrate (50 and 150 mg/kg), GW0742 (10 mg/kg), tesaglitazar (1.5 mg/kg) and bezafibrate (25 and 75 mg/kg) on ethanol intake and preference. Fenofibric acid, the active metabolite of fenofibrate, was quantified in mouse plasma, liver, and brain by LC-MS/MS. Data from a human genome wide association study (GWAS) completed in the Collaborative Study on the Genetics of Alcoholism (COGA) was then used to analyze the association of single nucleotide polymorphisms (SNPs) in different PPAR genes (PPARA, PPARD, PPARG, and PPARGC1A) with two phenotypes: DSM-IV alcohol dependence (AD) and the DSM-IV criterion of withdrawal. Results Activation of two isoforms of PPARs, α and γ, reduced ethanol intake and preference in the two different consumption tests in mice. However, a selective PPARδ agonist or a pan agonist for all three PPAR isoforms did not decrease ethanol consumption. Fenofibric acid, the active metabolite of the PPARα agonist fenofibrate, was detected in liver, plasma, and brain after 1 or 8 days of oral treatment. The GWAS from COGA supported an association of SNPs in PPARA and PPARG with alcohol withdrawal and PPARGC1A with AD but found no association for PPARD with either phenotype. Conclusions We provide convergent evidence using both mouse and human data for specific PPARs in alcohol action. Reduced ethanol intake in mice and the genetic association between AD or withdrawal in humans highlight the potential for repurposing FDA-approved PPARα or PPARγ agonists for the treatment of AD.
Absorption, metabolism and excretion of radiolabelled misoprostol were studied in laboratory animals and in humans. Dog and man were similar in terms of key parameters examined. Misoprostol itself was not present in plasma after its oral administration to humans. Misoprostol was rapidly converted by de-esterification to its free acid. This metabolite possesses significant desired pharmacological activity. Further metabolic conversion occurs over time via beta-oxidation of the alpha side chain, omega-oxidation of the beta side chain and reduction to the prostaglandin F analogs. The serum protein binding of the free acid metabolite of misoprostol was similar in young (81-88%) and elderly (81-89%) people. Binding was concentration-independent and was not altered by drugs which one would expect to be co-administered with misoprostol. In the rat, misoprostol neither inhibited nor induced drug metabolizing enzymes. A radio-immunological assay for measurement of the free acid metabolite in human plasma has been developed. This method has a sensitivity of 23 pg/ml and appears to be sufficiently sensitive for use in clinical trials.
The metabolic fates of potassium canrenoate (PC) and spironolactone (SP) were compared for the rat in vivo and in vitro. Approximately 18% of an in vivo dose of SP was metabolized to canrenone (CAN) and related compounds in the rat. In vitro, 20-30% of SP was dethioacetylated to CAN and its metabolites by rat liver 9000 g supernatant (S9). Thus, the major route of SP metabolism is via pathways that retain the sulfur moiety in the molecule. PC was metabolized by rat hepatic S9 to 6 alpha, 7 alpha- and 6 beta, 7 beta-epoxy-CAN. The beta-epoxide was further metabolized to its 3 alpha- and 3 beta-hydroxy derivatives as well as its glutathione (GSH) conjugate. Both 3 alpha- and 3 beta-hydroxy-6 beta, 7 beta-epoxy-CAN were shown to be direct acting mutagens in the mouse lymphoma assay, whereas 6 alpha, 7 alpha- and 6 beta, 7 beta-epoxy-CAN were not. These mutagenic metabolites, their precursor epoxides and their GSH conjugates were not formed from SP under identical conditions. The above findings appear to be due to inhibition of metabolism of CAN formed from SP by SP and/or its S-containing metabolites, since the in vitro metabolism of PC by rat hepatic microsomes was appreciably reduced in the presence of SP. The hypothesized mechanism(s) for this inhibition is that SP and its S-containing metabolites specifically inhibit an isozyme of hepatic cytochrome P-450 or SP is a preferred substrate over PC/CAN for the metabolizing enzymes. Absence of the CAN epoxide pathway in the metabolism of SP provides a possible explanation for the observed differences in the toxicological profiles of the two compounds.
The species differences in bioavailability of SC-48334 with the prodrug were due to species differences in hydrolysis rates of the prodrug in small intestinal mucosa. The monkey was a good animal model for prediction of esterase activity in human small intestine and relative bioavailability in man.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.