The catalytic hydrogenation of alkenes and alkynes is an important part of the undergraduate chemistry curriculum and is a fundamental process in chemical industry. Inquiry-based laboratory activities are presented that investigate the hydrogenation of alkynes on a nanoparticle palladium surface to form alkenes, which go on to form alkanes. Alkyne hydrogenation using H2 and/or D2 proceeds via a vinyl–palladium intermediate to form a π-bonded alkene–Pd species that can desorb or remain on the palladium surface and undergo further hydrogenation via the Horiuti–Polanyi mechanism, associated with extensive deuterium–hydrogen exchange. Central to the experiments is an inexpensive, easy-to-build glass tube containing palladium nanoparticles on alumina beads that can be used indefinitely. A total of seven inquiry-based questions are discussed regarding hydrogenation of alkynes. A similar number of open questions are discussed for further investigations by interested persons. These activities are suitable as guided research projects for science majors. Each experiment is performed by groups of two or three students in about an hour including analysis by mass spectrometry. An additional hour is allowed for student analysis and discussion of the mass spectral results, writeup, and future planning followed by about 30 min with the mentor for group presentation and discussion of the results. Results often lead to additional questions, either for clarification or for new exploration and form the basis for inquiry-based learning and problem-solving.
Cyclopropane can be hydrogenated to produce propane under moderately high temperatures (∼175 °C). Using a nanoparticle palladium catalyst, undergraduate students can explore the reaction and draw conclusions regarding the conditions for reaction. When deuterium is used, conclusions pertaining to the reaction mechanism are possible. The full complexity of the hydrogen−deuterium exchange equilibrium on the metal surface is indicated by the observation of all nine possible hydrogen−deuterium isotopologues, propane-d x (x = 0− 8), as products. To think about the reaction mechanism, the unusual bonding in cyclopropane and its interactions with a metal surface are considered. Differences between cyclopropane and propane in terms of their physical and chemical properties are discussed. The use of this activity as a multisemester research project across all levels of undergraduate students is discussed in terms of logistics, expectations, and outcomes. The catalyst tube consists of nanoparticle palladium beads (0.5%) on alumina, is inexpensive and easy to construct, and lasts indefinitely. Product analysis is by mass spectrometry and 1 H NMR spectroscopy. Suggestions are provided for undergraduate exploration and inquiry-based research activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.