The interfacial region of aqueous systems also known as the electrical double layer can be characterized on the molecular level with second harmonic and sum-frequency generation (SHG/SFG). SHG and SFG are surface specific methods for isotropic liquids. Here, we model the SHG/SFG intensity in reflection, transmission, and scattering geometry taking into account the spatial variation of all fields. We show that, in the presence of a surface electrostatic field, interference effects, which originate from oriented water molecules on a length scale over which the potential decays, can strongly modify the probing depth as well as the expected intensity at ionic strengths <10 −3 M. For reflection experiments this interference phenomenon leads to a significant reduction of the SHG/SFG intensity. Transmission mode experiments from aqueous interfaces are hardly influenced. For SHG/SFG scattering experiments the same interference leads to an increase in intensity and to modified scattering patterns. The predicted scattering patterns are verified experimentally.
Nano- and microparticles have optical, structural, and chemical properties that differ from both their building blocks and the bulk materials themselves. These different physical and chemical properties are induced by the high surface-to-volume ratio. As a logical consequence, to understand the properties of nano- and microparticles, it is of fundamental importance to characterize the particle surfaces and their interactions with the surrounding medium. Recent developments of nonlinear light scattering techniques have resulted in a deeper insight of the underlying light-matter interactions. They have shed new light on the molecular mechanism of surface kinetics in solution, properties of interfacial water in contact with hydrophilic and hydrophobic particles and droplets, molecular orientation distribution of molecules at particle surfaces in solution, interfacial structure of surfactants at droplet interfaces, acid-base chemistry on particles in solution, and vesicle structure and transport properties.
The ubiquity of aqueous solutions in contact with charged surfaces and the realization that the molecular-level details of water-surface interactions often determine interfacial functions and properties relevant in many natural processes have led to intensive research. Even so, many open questions remain regarding the molecular picture of the interfacial organization and preferential alignment of water molecules, as well as the structure of water molecules and ion distributions at different charged interfaces. While water, solutes and charge are present in each of these systems, the substrate can range from living tissues to metals. This diversity in substrates has led to different communities considering each of these types of aqueous interface. In this Review, by considering water in contact with metals, oxides and biomembranes, we show the essential similarity of these disparate systems. While in each case the classical mean-field theories can explain many macroscopic and mesoscopic observations, it soon becomes apparent that such theories fail to explain phenomena for which molecular properties are relevant, such as interfacial chemical conversion. We highlight the current knowledge and limitations in our understanding and end with a view towards future opportunities in the field.
We report on a high-resolution X-ray photoemission spectroscopy study on molecular-thick layers of L-cysteine deposited under ultrahigh vacuum conditions on Au(110). The analysis of core level shifts allowed us to distinguish unambiguously the states of the first-layer molecules from those of molecules belonging to the second layer. The first-layer molecules strongly interact with the metal through their sulfur headgroup. The multipeaked structure of the N 1s, O 1s, and C 1s core levels is interpreted in terms of different molecular moieties. The neutral acidic fraction (HSCH2CH(NH2)COOH) is abundant at low coverage likely associated with isolated molecules or dimers. The zwitterionic phase (HSCH2CH(NH3+)COO-) is largely dominant as the coverage approaches the monolayer limit and is related to the formation of ordered self-assembled molecular structures indicated by electron diffraction patterns. The occurrence of a small amount of cationic molecules (HSCH2CH(NH3+)COOH) is also discussed. The second-layer molecules mainly display zwitterionic character and are weakly adsorbed. Mild annealing up to 100 degrees C leads to the desorption of the second-layer molecules leaving electronic states of the first layer unaltered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.