A catalog of common, intermediate and well‐documented (CIWD) HLA‐A, ‐B, ‐C, ‐DRB1, ‐DRB3, ‐DRB4, ‐DRB5, ‐DQB1 and ‐DPB1 alleles has been compiled from over 8 million individuals using data from 20 unrelated hematopoietic stem cell volunteer donor registries. Individuals are divided into seven geographic/ancestral/ethnic groups and data are summarized for each group and for the total population. P (two‐field) and G group assignments are divided into one of four frequency categories: common (≥1 in 10 000), intermediate (≥1 in 100 000), well‐documented (≥5 occurrences) or not‐CIWD. Overall 26% of alleles in IPD‐IMGT/HLA version 3.31.0 at P group resolution fall into the three CIWD categories. The two‐field catalog includes 18% (n = 545) common, 17% (n = 513) intermediate, and 65% (n = 1997) well‐documented alleles. Full‐field allele frequency data are provided but are limited in value by the variations in resolution used by the registries. A recommended CIWD list is based on the most frequent category in the total or any of the seven geographic/ancestral/ethnic groups. Data are also provided so users can compile a catalog specific to the population groups that they serve. Comparisons are made to three previous CWD reports representing more limited population groups. This catalog, CIWD version 3.0.0, is a step closer to the collection of global HLA frequencies and to a clearer view of HLA diversity in the human population as a whole.
Although the definition of CWD alleles itself is affected by different parameters, calling for current updates of the list, the EFI CWD catalogue provides new insights into European population genetics and will be a very useful tool for tissue-typing laboratories in and beyond Europe.
This study aims at investigating the HLA molecular variation across Switzerland in order to determine possible regional differences, which would be highly relevant to several purposes: optimizing donor recruitment strategies in hematopoietic stem cell transplantation (HSCT), providing reliable reference data in HLA and disease association studies, and understanding the population genetic background(s) of this culturally heterogeneous country. HLA molecular data of more than 20,000 HSCT donors from 9–13 recruitment centers of the whole country were analyzed. Allele and haplotype frequencies were estimated by using new computer tools adapted to the heterogeneity and ambiguity of the data. Non-parametric and resampling statistical tests were performed to assess Hardy-Weinberg equilibrium, selective neutrality and linkage disequilibrium among different loci, both in each recruitment center and in the whole national registry. Genetic variation was explored through genetic distance and hierarchical analysis of variance taking into account both geographic and linguistic subdivisions in Switzerland. The results indicate a heterogeneous genetic makeup of the Swiss population: first, allele frequencies estimated on the whole national registry strongly deviate from Hardy-Weinberg equilibrium, by contrast with the results obtained for individual centers; second, a pronounced differentiation is observed for Ticino, Graubünden, and, to a lesser extent, Wallis, suggesting that the Alps represent(ed) a barrier to gene flow; finally, although cultural (linguistic) boundaries do not represent a main genetic differentiation factor in Switzerland, the genetic relatedness between population from south-eastern Switzerland and Italy agrees with historical and linguistic data. Overall, this study justifies the maintenance of a decentralized donor recruitment structure in Switzerland allowing increasing the genetic diversity of the national—and hence global—donor registry. It also indicates that HLA data of local donor recruitment centers can be used as reference data in both epidemiological and population genetic studies focusing on the genetic history of present European populations.
Identification of an unrelated HLA allele-matched hematopoietic stem cell (HSC) donor is a costly and time-consuming procedure. To improve search logistics, we have limited the search period to 6 months and have introduced a probability estimate of the chances of identifying a 10/10 HLA allele-matched donor. Probabilities were classified as high (>95%), intermediate (50%) and low (<5% chance) based on allele and haplotype frequencies. By analyzing 350 consecutive searches between 2002 and 2005 (1719 donors tested), the probability estimates turned out to be correct for 96% (high), 88% (low) and 56% (intermediate) patients. For searches with a high probability of success, at least one of the 10 most frequent haplotypes in Caucasoids was found in 69% of the patients, but in only 11% of the patients with a low-probability estimate (P<0.00001). Survival probability at 3 years was significantly higher for HSCT patients classified with a high-probability estimate when compared to patients in the intermediate/low-probability groups (74 vs 51 and 54% respectively, P=0.01). The same difference in survival probabilities was observed when only 10/10 matched unrelated HSCT patients were analyzed. In the intermediate-/low-probability groups, patients with alternative (haploidentical, autologous) or mismatched unrelated donors had similar survival estimates. Probability prediction is therefore feasible in the search process for unrelated donors and can guide the therapeutic strategy
<b><i>Background: </i></b>Over the last 2 decades, cord blood (CB) has become an important source of blood stem cells. Clinical experience has shown that CB is a viable source for blood stem cells in the field of unrelated hematopoietic blood stem cell transplantation. <b><i>Methods: </i></b>Studies of CB units (CBUs) stored and ordered from the US (National Marrow Donor Program (NMDP) and Swiss (Swiss Blood Stem Cells (SBSC)) CB registries were conducted to assess whether these CBUs met the needs of transplantation patients, as evidenced by units being selected for transplantation. These data were compared to international banking and selection data (Bone Marrow Donors Worldwide (BMDW), World Marrow Donor Association (WMDA)). Further analysis was conducted on whether current CB banking practices were economically viable given the units being selected from the registries for transplant. It should be mentioned that our analysis focused on usage, deliberately omitting any information about clinical outcomes of CB transplantation. <b><i>Results:</i></b> A disproportionate number of units with high total nucleated cell (TNC) counts are selected, compared to the distribution of units by TNC available. Therefore, the decision to use a low threshold for banking purposes cannot be supported by economic analysis and may limit the economic viability of future public CB banking. <b><i>Conclusions:</i></b> We suggest significantly raising the TNC level used to determine a bankable unit. A level of 125 × 10<sup>7</sup> TNCs, maybe even 150 × 10<sup>7</sup> TNCs, might be a viable banking threshold. This would improve the return on inventory investments while meeting transplantation needs based on current selection criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.