Background Colonization by livestock-associated MRSA (LA-MRSA) has increasingly been reported in the swine population worldwide. The aim of this study was to assess the prevalence of MRSA nasal carriage in healthy pigs, including the black ( Calabrese ) breed, from farms in the Calabria Region (Southern Italy). Between January and March 2018, a total of 475 healthy pigs reared in 32 farms were sampled by nasal swabbing. MRSA isolates were characterized by spa , MLST and SCC mec typing, and susceptibility testing to 17 antimicrobials. Results 22 of 32 (66.8%) pig farms resulted positive for MRSA. The prevalence of MRSA was 46.1% (219 MRSA culture-positive out of 475 samples). MRSA colonization was significantly higher in intensive farms and in pigs with a recent or ongoing antimicrobial treatment. All 219 MRSA isolates were assigned to ST398. The most common spa types were t011 (37.0%), t034 (22.4%) and t899 (15.1%). A novel spa type (t18290) was detected in one isolate. An insertion of IS 256 in the ST398-specific A07 fragment of the SAPIG2195 gene was detected in 10 out of 81 t011 isolates. Nearly all isolates carried the SCC mec type V element, except 11 isolates that carried the SCC mec type IVc. None of the isolates was positive for the Panton-Valentine leukocidin. All isolates were resistant to tetracycline. High resistance rates were also found for clindamycin (93.1%), trimethoprim/sulfamethoxazole (68.4%), fluoroquinolones (47.9–65.3%) and erythromycin (46.1%). None of the isolates was resistant to vancomycin and fusidic acid. Overall, a multidrug resistant phenotype was observed in 88.6% of isolates. Conclusions We report a high prevalence of MRSA among healthy swine in Southern Italy farms, with higher isolation frequency associated with intensive farming. The epidemiological types identified in our study reflect those reported in other European countries. Our findings underscore the importance of monitoring the evolution of LA-MRSA in pig farms in order to implement control measures and reduce the risk of spread in the animal population. Electronic supplementary material The online version of this article (10.1186/s12866-019-1422-x) contains supplementary material, which is available to authorized users.
The human virome comprises viruses that infect host cells, virus-derived elements in our chromosomes, and viruses that infect other organisms, including bacteriophages and plant viruses. The development of high-throughput sequencing techniques has shown that the human gut microbiome is a complex community in which the virome plays a crucial role into regulation of intestinal immunity and homeostasis. Nevertheless, the size of the human virome is still poorly understood. Indeed the enteric virome is in a continuous and dynamic equilibrium with other components of the gut microbiome and the gut immune system, an interaction that may influence the health and disease of the host. We review recent evidence on the viruses found in the gastrointestinal tract, discussing their interactions with the resident bacterial microbiota and the host immune system, in order to explore the potential impact of the virome on human health.
BackgroundLivestock-associated methicillin-resistant Staphylococcus aureus (MRSA) belonging to clonal complex 398 is recognized as an occupational hazard for workers employed in intensive animal husbandry, especially in the swine-breeding chain. In this study, we compared the prevalence and epidemiological type of MRSA isolates from swine and farm workers in a large area of southern Italy.MethodsBetween January and March 2018, 88 workers from 32 farms where we had previously performed a survey for MRSA colonization of farmed pigs, were sampled by nasal swabbing. A follow-up investigation was conducted on seven workers 1 year after primary screening. MRSA isolates were characterized by MLST, spa and SCCmec typing, and tested for susceptibility to 15 antimicrobials. Epidemiological correlations between human and swine MRSA isolates were supported by Rep-MP3 and RAPD PCR fingerprinting, and whole-genome sequencing.ResultsThe overall colonization rate of MRSA in swine farm workers was 21.6%, being significantly higher in intensive farms and in workers with direct animal contact. All human MRSA isolates were multi-drug resistant, belonged to the ST398 livestock clade, and did not carry Panton-Valentine leukocidin and enterotoxin genes. Notably, 94.1% of human MRSA isolates belonged to the same epidemiological type as swine MRSA isolates from the corresponding farm. Persistent MRSA carriage was documented in some workers 1 year after primary sampling.ConclusionsWe report a high prevalence of MRSA among swine farm workers, with higher colonization rates associated with intensive breeding and animal exposure. Our findings suggest unidirectional animal-to-human transmission of LA-MRSA and denote the high zoonotic transmissibility of the ST398 livestock clade.
Due to shared transmission routes, coinfection with Hepatitis C Virus (HCV) is common in patients infected by Human Immunodeficiency Virus (HIV). The immune-pathogenesis of liver disease in HIV/HCV coinfected patients is a multifactorial process. Several studies demonstrated that HIV worsens the course of HCV infection, increasing the risk of cirrhosis and hepatocellular carcinoma. Also, HCV might increase immunological defects due to HIV and risk of comorbidities. A specific cross-talk among HIV and HCV proteins in coinfected patients modulates the natural history, the immune responses, and the life cycle of both viruses. These effects are mediated by immune mechanisms and by a cross-talk between the two viruses which could interfere with host defense mechanisms. In this review, we focus on some virological/immunological mechanisms of the pathogenetic interactions between HIV and HCV in the human host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.