Nowadays, simultaneous localization and mapping (SLAM) algorithms support several commercial sensors which have recently been introduced to the market, and, like the more common mobile mapping systems (MMSs), are designed to acquire three-dimensional and high-resolution point clouds. The new systems are said to work both in external and internal environments, and completely avoid the use of targets and control points. The possibility of increasing productivity in three-dimensional digitization projects is fascinating, but data quality needs to be carefully evaluated to define appropriate fields of application. The paper presents the analytical measurement principle of these indoor mobile mapping systems (IMMSs) and the results of some tests performed on three commercial systems. A common test field was defined in order to acquire comparable data. By taking the already available terrestrial laser scan survey as the ground truth, the datasets under examination were compared with the reference and some assessments are presented which consider both quantitative and qualitative aspects. Geometric deformation in the final models was computed using the so-called Multiscale Model to Model Cloud Comparison (M3C2) algorithm. Cross sections and cloud to mesh (C2M) distances were also employed for a more detailed analysis. The real usability assessment is based on the features of recognizability, double surface evidence, and visualization effectiveness. For these evaluations, comparative images and tables are presented.
The monitoring and metric assessment of piles of natural or man-made materials plays a fundamental role in the production and management processes of multiple activities. Over time, the monitoring techniques have undergone an evolution linked to the progress of measure and data processing techniques; starting from classic topography to global navigation satellite system (GNSS) technologies up to the current survey systems like laser scanner and close-range photogrammetry. Last-generation 3D data management software allow for the processing of increasingly truer high-resolution 3D models. This study shows the results of a test for the monitoring and computing of stockpile volumes of material coming from the differentiated waste collection inserted in the recycling chain, performed by means of an unmanned aerial vehicle (UAV) photogrammetric survey and the generation of 3D models starting from point clouds. The test was carried out with two UAV flight sessions, with vertical and oblique camera configurations, and using a terrestrial laser scanner for measuring the ground control points and as ground truth for testing the two survey configurations. The computations of the volumes were carried out using two software and comparisons were made both with reference to the different survey configurations and to the computation software.
Italian dry-stone wall terracing represents one of the most iconic features of agricultural landscapes across Europe, with sites listed among UNESCO World Heritage Sites and FAO Globally Important Agricultural Heritage Systems (GIAHS). The analysis of microclimate modifications induced by alterations of hillslope and by dry-stone walls is of particular interest for the valuation of benefits and drawbacks of terraces cultivation, a global land management technique. The aim of this paper is to perform a thermal characterization of a dry-stone wall terraced vineyard in the Chianti area (Tuscany, Italy), to detect possible microclimate dynamics induced by dry-stone terracing. The aerial surveys were carried out by using two sensors, in the Visible (VIS) and Thermal InfraRed (TIR) spectral range, mounted on Unmanned Aerial Vehicles (UAVs), with two different flights. Our results reveal that, in the morning, vineyard rows close to dry-stone walls have statistically lower temperatures with respect to the external ones. In the afternoon, due to solar insulation, temperatures raised to the same value for each row. The results of this early study, jointly with the latest developments in UAV and sensor technologies, justify and encourage further analyses on local climatic modifications in terraced landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.