Commodity multicore systems are increasingly adopting hardware support that enables the system software to partition the last-level cache (LLC). This support makes it possible for the operating system (OS) or the Virtual Machine Monitor (VMM) to mitigate shared-resource contention effects on multicores by assigning different co-running applications to various cache partitions. Recently cache-clustering (or partition-sharing) strategies have emerged as a way to improve system throughput and fairness on new platforms with cache-partitioning support. As opposed to strict cache-partitioning, which allocates separate cache partitions to each application, cache-clustering allows partitions to be shared by a group of applications.In this article we propose LFOC+, a fairness-aware OS-level cache-clustering policy for commodity multicore systems. LFOC+ tries to mimic the behavior of the optimal cache-clustering solution for fairness, which we could obtain for different workload scenarios by using a simulation tool. Our dynamic cache-clustering strategy continuously gathers data from performance monitoring counters to classify applications at runtime based on the degree of cache sensitivity and contentiousness, and effectively separates cache-sensitive applications from aggressor programs to improve fairness, while providing acceptable system throughput. We implemented LFOC+ in the Linux kernel and evaluated it on a real system featuring an Intel Skylake processor, where we compare its effectiveness to that of four previously proposed cache-clustering policies. Our experimental analysis reveals that LFOC+ constitutes a lightweight OS-level policy and improves fairness relative to two other state-of-the-art fairness-aware strategies -Dunn and LFOC-, by up to 22% and up to 20.6%, respectively, and by 9% and 4.9% on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.