Background The Atlantic Forest biome extends along the entire Brazilian coast and is home to approximately 20,000 plant species, many of which are endemic; it is considered one of the hotspot regions of the planet. Several of these species are sources of natural products with biological activities that are still unknown. In this study, we evaluated the antimicrobial activity of 90 extracts derived from native Atlantic Forest tree species against Staphylococcus aureus , an important human and veterinary pathogen. Methods Extracts from native Atlantic Forest tree species were evaluated for their antimicrobial activity against S. aureus by in vitro standard methods. Phytochemical fractionation of the extract from Maclura tinctoria was performed by liquid-liquid partitioning. LC-DAD-ESI-MS was used for identification of constituents in the most active fraction. Damage of cells and alterations in the permeability of cell membrane were determined by atomic force microscopy (AFM) and crystal violet uptake assay, respectively. In vivo antimicrobial activity was evaluated using Galleria mellonella larvae infected with S. aureus with survival data collected using the Kaplan-Meier method. Results Among the organic or aqueous extracts tested here, 26 showed biological activity. Eight species showed relevant results, with a minimum inhibitory concentration (MIC) below 1 mg/mL. Antibacterial activity was registered for three species for the first time. An organic extract from Maclura tinctoria leaves showed the lowest MIC (0.08 mg/mL). Fractionation of this extract by liquid-liquid partitioning led to obtaining fraction 11FO d with a MIC of 0.04 mg/mL. This fraction showed strong activity against veterinary S. aureus isolates and contributed to the increased survival of Galleria mellonella larvae infected with S. aureus ATCC 29213. The bacterial surface was not altered by the presence of 11FO d, and no cell membrane damage was detected. The LC-DAD-ESI/MS analyses identified prenylated flavonoids as the major constituents responsible for the antibacterial activity of this active extract. Conclusion A fraction enriched in prenylated isoflavones and flavanones from M. tinctoria showed in vitro and in vivo efficacy as antistaphylococcal agents. These findings justify the need for further research to elucidate the mechanisms of action of these compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.