SummaryTumor-infiltrating regulatory T lymphocytes (Treg) can suppress effector T cells specific for tumor antigens. Deeper molecular definitions of tumor-infiltrating-lymphocytes could thus offer therapeutic opportunities. Transcriptomes of T helper 1 (Th1), Th17, and Treg cells infiltrating colorectal or non-small-cell lung cancers were compared to transcriptomes of the same subsets from normal tissues and validated at the single-cell level. We found that tumor-infiltrating Treg cells were highly suppressive, upregulated several immune-checkpoints, and expressed on the cell surfaces specific signature molecules such as interleukin-1 receptor 2 (IL1R2), programmed death (PD)-1 Ligand1, PD-1 Ligand2, and CCR8 chemokine, which were not previously described on Treg cells. Remarkably, high expression in whole-tumor samples of Treg cell signature genes, such as LAYN, MAGEH1, or CCR8, correlated with poor prognosis. Our findings provide insights into the molecular identity and functions of human tumor-infiltrating Treg cells and define potential targets for tumor immunotherapy.
In ischemic stroke, the necrotic core is surrounded by a zone of inflammation, in which delayed cell death aggravates the initial insult. Here, we provide evidence that the receptor for advanced glycation end products (RAGE) functions as a sensor of necrotic cell death and contributes to inflammation and ischemic brain damage. The RAGE ligand high mobility group box 1 (HMGB1) was elevated in serum of stroke patients and was released from ischemic brain tissue in a mouse model of cerebral ischemia. A neutralizing anti-HMGB1 antibody and HMGB1 box A, an antagonist of HMGB1 at the receptor RAGE, ameliorated ischemic brain damage. Interestingly, genetic RAGE deficiency and the decoy receptor soluble RAGE reduced the infarct size. In vitro, expression of RAGE in (micro)glial cells mediated the toxic effect of HMGB1. Addition of macrophages to neural cultures further enhanced the toxic effect of HMGB1. To test whether immigrant macrophages in the ischemic brain mediate the RAGE effect, we generated chimeric mice by transplanting RAGE−/− bone marrow to wild-type mice. RAGE deficiency in bone marrow-derived cells significantly reduced the infarct size. Thus, HMGB1–RAGE signaling links necrosis with macrophage activation and may provide a target for anti-inflammatory therapy in stroke.
Long non-coding-RNAs are emerging as important regulators of cellular functions but little is known on their role in human immune system. Here we investigated long intergenic non-coding-RNAs (lincRNAs) in thirteen T and B lymphocyte subsets by RNA-seq analysis and de novo transcriptome reconstruction. Over five hundred new lincRNAs were identified and lincRNAs signatures were described. Expression of linc-MAF-4, a chromatin-associated TH1-specific lincRNA, was inversely correlated with MAF, a TH2-associated transcription factor. Linc-MAF-4 down-regulation skewed T cell differentiation toward TH2. We identified a long-distance interaction between linc-MAF-4 and MAF genomic regions, where linc-MAF-4 associates with LSD1 and EZH2, suggesting linc-MAF-4 regulated MAF transcription by recruitment of chromatin modifiers. Our results demonstrate a key role of lincRNAs in T lymphocyte differentiation.
MicroRNAs are small noncoding RNAs that regulate gene expression post-transcriptionally. Here we applied microRNA profiling to 17 human lymphocyte subsets to identify microRNA signatures that were distinct among various subsets and different from those of mouse lymphocytes. One of the signature microRNAs of naive CD4+ T cells, miR-125b, regulated the expression of genes encoding molecules involved in T cell differentiation, including IFNG, IL2RB, IL10RA and PRDM1. The expression of synthetic miR-125b and lentiviral vectors encoding the precursor to miR-125b in naive lymphocytes inhibited differentiation to effector cells. Our data provide an 'atlas' of microRNA expression in human lymphocytes, define subset-specific signatures and their target genes and indicate that the naive state of T cells is enforced by microRNA.
The basic unit of genome packaging is the nucleosome, and nucleosomes have long been proposed to restrict DNA accessibility both to damage and to transcription. Nucleosome number in cells was considered fixed, but recently aging yeast and mammalian cells were shown to contain fewer nucleosomes. We show here that mammalian cells lacking High Mobility Group Box 1 protein (HMGB1) contain a reduced amount of core, linker, and variant histones, and a correspondingly reduced number of nucleosomes, possibly because HMGB1 facilitates nucleosome assembly. Yeast nhp6 mutants lacking Nhp6a and -b proteins, which are related to HMGB1, also have a reduced amount of histones and fewer nucleosomes. Nucleosome limitation in both mammalian and yeast cells increases the sensitivity of DNA to damage, increases transcription globally, and affects the relative expression of about 10% of genes. In yeast nhp6 cells the loss of more than one nucleosome in four does not affect the location of nucleosomes and their spacing, but nucleosomal occupancy. The decrease in nucleosomal occupancy is non-uniform and can be modelled assuming that different nucleosomal sites compete for available histones. Sites with a high propensity to occupation are almost always packaged into nucleosomes both in wild type and nucleosome-depleted cells; nucleosomes on sites with low propensity to occupation are disproportionately lost in nucleosome-depleted cells. We suggest that variation in nucleosome number, by affecting nucleosomal occupancy both genomewide and gene-specifically, constitutes a novel layer of epigenetic regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.