The gene FUS (also known as TLS (for translocated in liposarcoma) and hnRNP P2) is translocated with the gene encoding the transcription factor ERG-1 in human myeloid leukaemias. Although the functions of wild-type FUS are unknown, the protein contains an RNA-recognition motif and is a component of nuclear riboprotein complexes. FUS resembles a transcription factor in that it binds DNA, contributes a transcriptional activation domain to the FUS-ERG oncoprotein and interacts with several transcription factors in vitro. To better understand FUS function in vivo, we examined the consequences of disrupting Fus in mice. Our results indicate that Fus is essential for viability of neonatal animals, influences lymphocyte development in a non-cell-intrinsic manner, has an intrinsic role in the proliferative responses of B cells to specific mitogenic stimuli and is required for the maintenance of genomic stability. The involvement of a nuclear riboprotein in these processes in vivo indicates that Fus is important in genome maintenance.
Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by activation-induced cytosine deaminase (AID). The uracil, and potentially neighboring bases, are processed by error-prone base excision repair and mismatch repair. Deficiencies in Ung, Msh2, or Msh6 affect SHM and CSR. To determine whether Msh2/Msh6 complexes which recognize single-base mismatches and loops were the only mismatch-recognition complexes required for SHM and CSR, we analyzed these processes in Msh6−/−Ung−/− mice. SHM and CSR were affected in the same degree and fashion as in Msh2−/−Ung−/− mice; mutations were mostly C,G transitions and CSR was greatly reduced, making Msh2/Msh3 contributions unlikely. Inactivating Ung alone reduced mutations from A and T, suggesting that, depending on the DNA sequence, varying proportions of A,T mutations arise by error-prone long-patch base excision repair. Further, in Msh6−/−Ung−/− mice the 5′ end and the 3′ region of Ig genes was spared from mutations as in wild-type mice, confirming that AID does not act in these regions. Finally, because in the absence of both Ung and Msh6, transition mutations from C and G likely are “footprints” of AID, the data show that the activity of AID is restricted drastically in vivo compared with AID in cell-free assays.
Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs); however, most loci are located in gene-distal non-coding regions and their target genes are not known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a resource for identifying and prioritizing the functional targets of CVD associations. We validate these maps by demonstrating that promoters preferentially contact distal sequences enriched for tissue-specific transcription factor motifs and are enriched for chromatin marks that correlate with dynamic changes in gene expression. Using the CM PCHi-C map, we linked 1999 CVD-associated SNPs to 347 target genes. Remarkably, more than 90% of SNP-target gene interactions did not involve the nearest gene, while 40% of SNPs interacted with at least two genes, demonstrating the importance of considering long-range chromatin interactions when interpreting functional targets of disease loci.
24Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs), 25 however most loci are located in gene-distal non-coding regions and their target genes are not known. 26Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced 27 pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a resource for 28 identifying and prioritizing the functional targets of CVD associations. We validate these maps by 29 demonstrating that promoters preferentially contact distal sequences enriched for tissue-specific 30 transcription factor motifs and are enriched for chromatin marks that correlate with dynamic changes in 31 was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
Somatic hypermutation (SHM) is restricted to VDJ regions and their adjacent flanks in immunoglobulin (Ig) genes, whereas constant regions are spared. Mutations occur after about 100 nucleotides downstream of the promoter and extend to 1–2 kb. We have asked why the very 5′ and most of the 3′ region of Ig genes are unmutated. Does the activation-induced cytosine deaminase (AID) that initiates SHM not gain access to these regions, or does AID gain access, but the resulting uracils are repaired error-free because error-prone repair does not gain access? The distribution of mutations was compared between uracil DNA glycosylase (Ung)-deficient and wild-type mice in endogenous Ig genes and in an Ig transgene. If AID gains access to the 5′ and 3′ regions that are unmutated in wild-type mice, one would expect an “AID footprint,” namely transition mutations from C and G in Ung-deficient mice in the regions normally devoid of SHM. We find that the distribution of total mutations and transitions from C and G is indistinguishable in wild-type and Ung-deficient mice. Thus, AID does not gain access to the 5′ and constant regions of Ig genes. The implications for the role of transcription and Ung in SHM are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.