Isolated noncompaction of the ventricular myocardium (INVM) sometimes referred to as spongy myocardium is a rare, congenital and also acquired cardiomyopathy. It appears to divide the presentation into neonatal, childhood and adult forms of which spongy myocardium and systolic dysfunction is the commonality. The disorder is characterized by a left ventricular hypertrophy with deep trabeculations, and with diminished systolic function, with or without associated left ventricular dilation. In half or more of the cases, the right ventricle is also affected. The sporadic type, however, in some patients, may be due to chromosomal abnormalities and the occurrence of familial incidence. Isolated noncompaction of the left ventricular myocardium in the majority of adult patients is an autosomal dominant disorder. The familial and X‐linked disorders have been described by various authors. We here describe the genetic background of this disorder: some of the most mutated genes that are responsible for the disease are (G4.5 (tafazzin gene): α‐dystrobrevin gene (DTNA); FKBP‐12 gene; lamin A/C gene; Cypher/ZASP (LIM, LDB3) gene); and some genotype‐phenotype correlations (Becker muscular dystrophy, Emery‐Dreifuss muscular dystrophy or Barth syndrome) based on the literature review. Copyright © 2007 Wiley Periodicals, Inc.
Arrhythmogenic right ventricular dysplasia (ARVD) is a clinical and pathologic entity whose diagnosis rests on electrocardiographic and angiographic criteria; pathologic findings, replacement of ventricular myocardium with fatty and fibrous elements, preferentially involve the right ventricular (RV) free wall. There is a familial occurrence in about 50% of cases, with autosomal dominant inheritance with variable penetrance and polymorphic phenotypic expression, and is one of the major genetic causes of juvenile sudden death. When the dysplasia is extensive, it may represent the extensive form of ARVCM (arrhythmogenic right ventricular cardiomyopathy). In this review, we focus on the some candidate genes mutations and information on some genotype-phenotype correlation in the ARVD. Our findings are in agreement with those of European Society of Cardiology who stated that: genetic analysis is usefull in families with RV cardiomyopathy because whenever a pathogenetic mutation is identified, it becomes possible to establish a presymptomatic diagnosis of the disease among family members and to provide them with genetic counseling to monitor the development of the disease and to assess the risk of transmitting the disease offspring. On the basis of current knowledge, genetic analysis does not contribute to risk stratification of arrhythmogenic RV cardiomyopathy.
This review discusses the risk of cardiac events and genotype-based management of LQTS. We describe here the genetic background of long QT syndrome and the eleven different genes for ion-channels and a structural anchoring protein associated with that disorder. Clinical Background section discusses the risk of cardiac events associated with different LQTS types. Management and Prevention section describes in turn gene-specific therapy, which was based on the identification of the gene defect and the dysfunction of the associated transmembrane ion channel. In patients affected by LQTS, genetic analysis is useful for risk stratification and for making therapeutic decisions. A recent study reported a quite novel pathogenic mechanism for LQTS and suggested that treatments aimed at scaffolding proteins rather than specific ion channels may be an alternative to antiarrhythmic strategy in the future.
IntroductionThe main goal of this study was to examine the patient age and sex dependent expression of KCNQ1 and HERG genes that encode potassium channels responsible for the occurrence of long QT syndrome (LQTS).Material and methodsThe study enrolled 43 families whose members suffered from LQTS type 1 (LQTS1) or 2 (LQTS2) or were healthy. The study attempted to prove that β-actin is a good endogenous control when determining the expression of the studied genes. Examination of gene expression was achieved with quantitative real-time PCR (QRT-PCR). Expression of the investigated genes was inferred from the analysis of the number of mRNA copies per 1 μg total RNA isolated from whole blood.ResultsSignificantly lower KCNQ1 and KCNH2 mRNA levels in healthy females than healthy males were observed (p = 0.032; p = 0.02). In male patients both transcripts were expressed at a lower level (p = 0.0084; p = 0.035). The comparison of transcriptional activity of KCNQ1 and KCNH2 in healthy adults and children revealed higher KCNQ1 and lower KCNH2 mRNA levels in healthy adults (p = 0.033; p = 0.04), higher KCNQ1 and lower KCNH2 mRNA levels in adult patients below 55 years old than in adults over 55 years old (p=0.036; p = 0.044), and significantly higher KCNQ1 and lower KCNH2 mRNA levels in adult patients (over 55 years) than in paediatric patients (below 15 years) (p=0.047; p = 0.08).ConclusionsThe results support the hypothesis that KCNQ1 and HERG gene expression is influenced by age and gender in human patients with long QT syndrome and in healthy subjects.
Compared to conventional echocardiography, spectral tissue Doppler imaging (s-TDI) allows more precise evaluation of diastolic cardiac function. The purpose of this study was to conduct s-TDI to analyze the slow movement of the left ventricular (LV) myocardium in adolescents with systemic arterial hypertension (HT) and to determine whether patients with HT suffer from LV diastolic dysfunction. The study group comprised 69 consecutive patients (48 boys and 21 girls aged 14–17 years [mean, 15.5 ± 1.1 years]) with primary HT, and the control group comprised 48 healthy participants (24 boys and 24 girls aged 14–17 years [mean, 15.8 ± 1.3 years]). Physical examinations, 24-hour arterial blood pressure monitoring, conventional 2-dimensional and Doppler echocardiography, and s-TDIs were performed. Analysis revealed that study group participants were significantly heavier and had greater LV mass indices than controls (P < 0.001). There were no differences between the velocities of E waves (peak early filling of mitral inflow), but the deceleration times of the mitral E waves were significantly shorter whereas the A waves survived longer in the study group than in the control group. The velocities of A waves (peak late filling of mitral inflow) were elevated (P = 0.041), and the E/A wave pattern (E/A = 1.8 ± 0.4) was normal. These results suggest pseudonormalization, a type of LV diastolic dysfunction in adolescents with HT.In the study group, when the sample volume was positioned at the septal or lateral insertion site of the mitral leaflet, the e′ wave velocity was significantly depressed whereas the a′ wave velocity was elevated, compared to those of the control group (P < 0.001).The e′/a′ ratios from the septal and lateral insertion sites were lower, whereas the E/e′ ratio from the septal insertion site was significantly higher in the study group, similar to that seen in atrial reversal velocity (P < 0.001).These findings indicate that using sTDI to find and measure diastolic LV failure is valuable when the probe is placed at the septal and lateral mitral valve annuli during examination.Changes in the myocardium appear similar to those seen in adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.