We introduce the AusTraits database - a compilation of measurements of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 375 traits across 29230 taxa from field campaigns, published literature, taxonomic monographs, and individual taxa descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological parameters (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual-, species- and genus-level observations coupled to, where available, contextual information on site properties. This data descriptor provides information on version 2.1.0 of AusTraits which contains data for 937243 trait-by-taxa combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data to increase our collective understanding of the Australian flora.
We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
Summary Banksia woodlands are renowned for their flammability and prescribed fire is increasingly employed to reduce the risk of wildfire and to protect life and property, particularly where these woodlands occur on the urban interface. Prescribed fire is also employed as a tool for protecting biodiversity assets but can have adverse impacts on native plant communities. We investigated changes in species richness and cover in native and introduced flora following autumn prescribed fire in a 700‐hectare Banksia/Tuart (Eucalyptus gomphocephala) woodland that had not burnt for more than 30 years. Effectiveness of management techniques at reducing weed cover and the impacts of grazing by Western Grey Kangaroo (Macropus fuliginosus) postfire were also investigated. Thirty plots were established across a designated burn boundary immediately before a prescribed fire in May 2011, and species richness and cover were measured 3 years after the fire, in spring of 2013. Fencing treatments were established immediately following the fire, and weed management treatments were applied annually in winter over the subsequent 3 years. Our results indicate that autumn prescribed fire can facilitate increases in weed cover, but management techniques can limit the establishment of targeted weeds postfire. Postfire grazing was found to have significant adverse impacts on native species cover and vegetation structure, but it also limited establishment of some serious weeds including Pigface (Carpobrotus edulis). Manipulating herbivores in time and space following prescribed fire could be an important and cost‐effective way of maintaining biodiversity values.
Terracina spurge or Geraldton carnation weed (Euphorbia terracina) is an invasive weed that impacts native plant communities across southern mainland Australia and in the United States (USA), including southern California and Pennsylvania. There are, however, few published accounts of appropriate control techniques or recovery of native vegetation following removal of this species. We report here on the results of three adaptive management projects investigating effective control of Terracina Spurge and subsequent recovery of Banksia woodlands, coastal shrublands, and sedgeland communities in the Swan Coastal Plain bioregion, south-west Western Australia. In Banksia woodlands the herbicide metsulfuron-methyl (600g/kg) (Brush-Off ® ) in combination with hand removal of adult plants was effective at controlling Terracina spurge. Although there was some initial off target damage to native flora, after five years of repeated application the Banksia woodland within the treated area is regenerating. In sedgelands of the Holocene dune swales and in coastal shrublands 750g/kg triasulfuron (Logran ® ) was very effective, reducing Terracina spurge populations significantly in the first two years. The treatment resulted in little damage to native flora. At both sites a significant difference in species abundance between years was attributed mostly to a decrease in the cover of Terracina spurge but also an increase in cover of several species of native flora. The results indicate triasulfuron is an effective tool for the management of Terracina spurge in coastal plant communities potentially leading to the protection and restoration of significant areas of the conservation estate within the Swan Coastal Plain bioregion and beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.