Context: The Boraginaceae family comprises plants that have important therapeutic and cosmetic applications. Their pharmacological effect is related to the presence of naphthaquinones, flavonoids, terpenoids, phenols, or purine derivative – allantoin.Objective: In the present study, comparison of some secondary metabolite content and phytochemical relationship between 17 species of the Boraginaceae family were analyzed.Materials and methods: High performance capillary electrophoresis (HPCE) was used to perform a chemometric analysis in the following Boraginaceae species: Anchusa azurea Mill., Anchusa undulata L., Borago officinalis L., Buglossoides purpurocaerulea (L.) I.M. Johnst., Cerinthe minor L., Cynoglossum creticum Mill, Echium italicum L., Echium russicum J.F. Gmel., Echium vulgare L., Lindelofia macrostyla (Bunge) Popov (syn. Lindelofia anchusoides (Lindl.) Lehm.), Lithospermum officinale L., Nonea lutea (Desr.) DC., Omphalodes verna Moench (syn. Cynoglossum omphaloides L.), Pulmonaria mollis Wulfen ex Hornem., Pulmonaria obscura Dumort., Symphytum cordatum Waldst. & Kit ex Willd., and Symphytum officinale L.Results: Six active compounds in shoot extracts (allantoin, p-hydroxybenzoic acid, rutin, hydrocaffeic acid, rosmarinic acid, and chlorogenic acid) and four compounds in root extracts (allantoin, hydrocaffeic acid, rosmarinic acid, and shikonin) were identified. The presence and abundance of these compounds were used for the characterization of the species and for revealing their phytochemical similarity and differentiation.Discussion and conclusion: The present study provides the first comprehensive report of the extraction and quantification of several compounds in Boraginaceae species (some of them for the first time). Among the 17 species studied, species with potentially high pharmacological activity were recognized.
Phenolic acid composition, antioxidant, and cytotoxic activities in leaves of four (Crassulaceae) species were evaluated. Determination of phenolic acid contents were conducted by an optimized LC-ESI-MS/MS method. The results show that Raym.-Hamet & H. Perrier (using ASE extraction) and (Lam.) Pers. contain the highest amounts of phenolic acids, while Engl. the lowest ones. Among phenolic acids ferulic, caffeic and protocatechuic acids were occurring in the highest quantities in the analysed species. The greatest amounts of ferulic and protocatechuic acids were found in and Moreover, the antiradical and cytotoxic activities of extracts were investigated. All tested extracts possessed antioxidant activity. The obtained IC values (μg/mL) ranged from 49.9 μg/mL to 1410 μg/mL, indicating a large variation of the activity of the analysed extracts. Cytotoxicity assays revealed dose-dependent effects in the cells lines tested. Only extract showed a high cytotoxicity against the H-9 human T cell line. Other extracts (, ,) showed more pronounced cytotoxicity towards J45.01 cells (human acute lymphoblastic leukaemia T cells). The present study demonstrated that extracts have significant antioxidant and cytotoxic effects. This suggests that these species can be used as new sources of natural antioxidants and potential anticancer compounds.
Of the species investigated, most displayed similar anatomical organization, their trichomal elaiophores occurring on the labellar callus. They, thus, differ from many other members of the Oncidiinae, where epithelial elaiophores are found either on the callus, or on the lateral lobes of the labellum. However, ultrastructurally, all elaiophores, whether those of representatives of the Ornithocephalus clade, or those of other oil-secreting Oncidiinae, possessed a similar complement of organelles, regardless of whether the elaiophores were trichomal or epithelial. In view of the latter, and the similar chemical composition of oils derived from all Oncidiinae investigated to date, it is probable that position and type of elaiophore, and possibly the structure of the overlying cuticle, play an important role in pollinator selection in these oil-secreting orchids.
Soy (Glycine max (L.) Merr.) is an annual plant cultivated worldwide mostly for food. Moreover, due to its pharmacological properties it is widely used in pharmacy for alleviating the symptoms of osteoporosis. The aim of the present study was to investigate the biofortification of soy treated with various concentrations of strontium. Soy was found to have a strong capacity to absorb Sr(2+) (bioconcentration factor higher than 1). A positive linear correlation (R(2) > 0.98) between the amount of strontium in the growth medium and its content in the plant was also observed. Moreover, at a concentration of 1.5 mM, strontium appeared to be nontoxic and even stimulated plant growth by approximately 19.4% and 22.6% of fresh weight for shoots and roots, respectively. Our research may be useful to obtain vegetable products or herbal preparations containing both phytoestrogens and strontium to prevent postmenopausal osteoporosis.
The present study investigated changes in the content and chemical composition of the essential oil extracted by hydrodistillation from air-dried Melissa officinalis L. (lemon balm) leaves in the first and second year of plant growth. The lemon balm oil was analysed by GC-MS and GC-FID. The presence of 106 compounds, representing 100% of the oil constituents, was determined in the oil. The predominant components were geranial (45.2% and 45.1%) and neral (32.8% and 33.8%); their proportions in the examined samples of the oil obtained from one-and two-year-old plants were comparable. However, the age of lemon balm plants affected the concentration of other constituents and the proportions of the following compounds were subject to especially high fluctuations: citronellal (8.7% and 0.4%), geraniol (trace amounts and 0.6%), and geranyl acetate (0.5% and 3.0%), as well as, among others, isogeranial, E-caryophyllene, caryophyllene oxide, germacrene D, and carvacrol. The essential oil of two-year-old plants was characterized by a richer chemical composition than the oil from younger plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.