The diverse forms of protein phosphatase 1 in vivo result from the association of its catalytic subunit (PP1c) with different regulatory subunits, one of which is the G‐subunit (GM) that targets PP1c to glycogen particles in muscle. Here we report the structure, at 3.0 Å resolution, of PP1c in complex with a 13 residue peptide (GM[63–75]) of GM. The residues in GM[63–75] that interact with PP1c are those in the Arg/Lys–Val/Ile–Xaa–Phe motif that is present in almost every other identified mammalian PP1‐binding subunit. Disrupting this motif in the GM[63–75] peptide and the M110[1–38] peptide (which mimics the myofibrillar targeting M110 subunit in stimulating the dephosphorylation of myosin) prevents these peptides from interacting with PP1. A short peptide from the PP1‐binding protein p53BP2 that contains the RVXF motif also interacts with PP1c. These findings identify a recognition site on PP1c, invariant from yeast to humans, for a critical structural motif on regulatory subunits. This explains why the binding of PP1 to its regulatory subunits is mutually exclusive, and suggests a novel approach for identifying the functions of PP1‐binding proteins whose roles are unknown.
The phosphorylation state of any protein represents a balance of the actions of specific protein kinases and protein phosphatases. Many protein phosphatases are highly enriched in, or exclusive to, the nuclear compartment, where they dephosphorylate key substrates to regulate various nuclear processes. In this review we will discuss recent findings that define the role of nuclear protein phosphatases in controlling transforming growth factor-beta (TGFbeta) and bone-morphogenetic protein (BMP) signalling, the DNA-damage response, RNA processing, cell-cycle progression and gene transcription.
The rapid inactivation of p42mapk initiated five minutes after stimulation of endothelial, adipose and chromaffin cells with growth factor is not catalysed by CL100, but rather by protein phosphatase 2A and by a protein tyrosine phosphatase distinct from CL100. Induction of CL100 is not accompanied by the inactivation of p42mapk in a number of situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.