a b s t r a c tIt is widely acknowledged that adopting a socio-technical approach to system development leads to systems that are more acceptable to end users and deliver better value to stakeholders. Despite this, such approaches are not widely practised. We analyse the reasons for this, highlighting some of the problems with the better known socio-technical design methods. Based on this analysis we propose a new pragmatic framework for socio-technical systems engineering (STSE) which builds on the (largely independent) research of groups investigating work design, information systems, computer-supported cooperative work, and cognitive systems engineering. STSE bridges the traditional gap between organisational change and system development using two main types of activity: sensitisation and awareness; and constructive engagement. From the framework, we identify an initial set of interdisciplinary research problems that address how to apply socio-technical approaches in a cost-effective way, and how to facilitate the integration of STSE with existing systems and software engineering approaches.
Human-induced landscape change associated with habitat loss and fragmentation places wildlife populations at risk. One issue in these landscapes is a change in the prevalence of disease which may result in increased mortality and reduced fecundity. Our understanding of the influence of habitat loss and fragmentation on the prevalence of wildlife diseases is still in its infancy. What is evident is that changes in disease prevalence as a result of human-induced landscape modification are highly variable. The importance of infectious diseases for the conservation of wildlife will increase as the amount and quality of suitable habitat decreases due to human land-use pressures. We review the experimental and observational literature of the influence of human-induced landscape change on wildlife disease prevalence, and discuss disease transmission types and host responses as mechanisms that are likely to determine the extent of change in disease prevalence. It is likely that transmission dynamics will be the key process in determining a pathogen's impact on a host population, while the host response may ultimately determine the extent of disease prevalence. Finally, we conceptualize mechanisms and identify future research directions to increase our understanding of the relationship between human-modified landscapes and wildlife disease prevalence. This review highlights that there are rarely consistent relationships between wildlife diseases and human-modified landscapes. In addition, variation is evident between transmission types and landscape types, with the greatest positive influence on disease prevalence being in urban landscapes and directly transmitted disease systems. While we have a limited understanding of the potential influence of habitat loss and fragmentation on wildlife disease, there are a number of important areas to address in future research, particularly to account for the variability in increased and decreased disease prevalence. Previous studies have been based on a one-dimensional comparison between unmodified and modified sites. What is lacking are spatially and temporally explicit quantitative approaches which are required to enable an understanding of the range of key causal mechanisms and the reasons for variability. This is particularly important for replicated studies across different host-pathogen systems. Furthermore, there are few studies that have attempted to separate the independent effects of habitat loss and fragmentation on wildlife disease, which are the major determinants of wildlife population dynamics in human-modified landscapes. There is an urgent need to understand better the potential causal links between the processes of human-induced landscape change and the associated influences of habitat fragmentation, matrix hostility and loss of connectivity on an animal's physiological stress, immune response and disease susceptibility. This review identified no study that had assessed the influence of human-induced landscape change on the prevalence of a wildlife sexually transmi...
Context. Global climate change will lead to increased climate variability, including more frequent drought and heatwaves, in many areas of the world. This will affect the distribution and numbers of wildlife populations. In south-west Queensland, anecdotal reports indicated that a low density but significant koala population had been impacted by drought from [2001][2002][2003][2004][2005][2006][2007][2008][2009], in accord with the predicted effects of climate change.Aims. The study aimed to compare koala distribution and numbers in south-west Queensland in 2009 with pre-drought estimates from 1995-1997.Methods. Community surveys and faecal pellet surveys were used to assess koala distribution. Population densities were estimated using the Faecal Standing Crop Method. From these densities, koala abundance in 10 habitat units was interpolated across the study region. Bootstrapping was used to estimate standard error. Climate data and land clearing were examined as possible explanations for changes in koala distribution and numbers between the two time periods.Key results. Although there was only a minor change in distribution, there was an 80% decline in koala numbers across the study region, from a mean population of 59 000 in 1995 to 11 600 in 2009. Most summers between 2002 and 2007 were hotter and drier than average. Vegetation clearance was greatest in the eastern third of the study region, with the majority of clearing being in mixed eucalypt/acacia ecosystems and vegetation on elevated residuals.Conclusions. Changes in the area of occupancy and numbers of koalas allowed us to conclude that drought significantly reduced koala populations and that they contracted to critical riparian habitats. Land clearing in the eastern part of the region may reduce the ability of koalas to move between habitats.Implications. The increase in hotter and drier conditions expected with climate change will adversely affect koala populations in south-west Queensland and may be similar in other wildlife species in arid and semiarid regions. The effect of climate change on trailing edge populations may interact with habitat loss and fragmentation to increase extinction risks. Monitoring wildlife population dynamics at the margins of their geographic ranges will help to manage the impacts of climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.