Brain waves are rhythmic voltage oscillations emerging from the synchronization of individual neurons into a neuronal network. These oscillations range from slow to fast fluctuations, and are classified by power and frequency band, with different frequency bands being associated with specific behaviours. It has been postulated that at least ten distinct mechanisms are required to cover the frequency range of neural oscillations, however the mechanisms that gear the transition between distinct oscillatory frequencies are unknown. In this study, we have used electrophysiological recordings to explore the involvement of astrocytic K+ clearance processes in modulating neural oscillations at both network and cellular levels. Our results indicate that impairment of astrocytic K+ clearance capabilities, either through blockade of K+ uptake or astrocytic connectivity, enhance network excitability and form high power network oscillations over a wide range of frequencies. At the cellular level, local increases in extracellular K+ results in modulation of the oscillatory behaviour of individual neurons, which underlies the network behaviour. Since astrocytes are central for maintaining K+ homeostasis, our study suggests that modulation of their inherent capabilities to clear K+ from the extracellular milieu is a potential mechanism to optimise neural resonance behaviour and thus tune neural oscillations.
The advent of large scale neural computational platforms has highlighted the lack of algorithms for synthesis of neural structures to perform predefined cognitive tasks. The Neural Engineering Framework (NEF) offers one such synthesis, but it is most effective for a spike rate representation of neural information, and it requires a large number of neurons to implement simple functions. We describe a neural network synthesis method that generates synaptic connectivity for neurons which process time-encoded neural signals, and which makes very sparse use of neurons. The method allows the user to specify—arbitrarily—neuronal characteristics such as axonal and dendritic delays, and synaptic transfer functions, and then solves for the optimal input-output relationship using computed dendritic weights. The method may be used for batch or online learning and has an extremely fast optimization process. We demonstrate its use in generating a network to recognize speech which is sparsely encoded as spike times.
We present the biologically inspired Ripple Pond Network (RPN), a simply connected spiking neural network which performs a transformation converting two dimensional images to one dimensional temporal patterns (TP) suitable for recognition by temporal coding learning and memory networks. The RPN has been developed as a hardware solution linking previously implemented neuromorphic vision and memory structures such as frameless vision sensors and neuromorphic temporal coding spiking neural networks. Working together such systems are potentially capable of delivering end-to-end high-speed, low-power and low-resolution recognition for mobile and autonomous applications where slow, highly sophisticated and power hungry signal processing solutions are ineffective. Key aspects in the proposed approach include utilizing the spatial properties of physically embedded neural networks and propagating waves of activity therein for information processing, using dimensional collapse of imagery information into amenable TP and the use of asynchronous frames for information binding.
Whilst most engineered systems use signals that are continuous in time, there is a domain of systems in which signals consist of events, or point processes. Events, like Dirac delta functions, have no meaningful time duration. Many important real-world systems are intrinsically event-based, including the mammalian brain, in which the primary packets of data are spike events, or action potentials. In this domain, signal processing requires responses to spatio-temporal patterns of events. We show that some straightforward modifications to the standard ELM topology produce networks that are able to perform spatio-temporal event processing online with a high degree of accuracy. The modifications involve the re-definition of hidden layer units as synaptic kernels, in which the input delta functions are transformed into continuousvalued signals using a variety of impulse-response functions. This permits the use of linear solution methods in the output layer, which can produce events or point processes as output, if modeled as a classifier with the two output classes being "event" or "no event". We illustrate the method in application to a spike-processing problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.