It has become evident over the past few years that many complex cellular processes, including control of the cell cycle and ubiquitin-dependent proteolysis, are carried out by sophisticated multisubunit protein machines that are dynamic in abundance, post-translational modification state, and composition. To understand better the nature of the macromolecular assemblages that carry out the cell cycle and ubiquitin-dependent proteolysis, we have used mass spectrometry extensively over the past few years to characterize both the composition of various protein complexes and the modification states of their subunits. In this article we review some of our recent efforts, and describe a promising new approach for using mass spectrometry to dissect protein interaction networks.
Organelle DB () is a web-accessible relational database presenting a supplemented catalog of organelle-localized proteins and major protein complexes. Since its release in 2004, Organelle DB has grown by 20% to encompass over 30 000 proteins from 138 eukaryotic organisms. Each protein in Organelle DB is presented with its subcellular localization, primary sequence and a detailed description of its function, as available. All records in Organelle DB have been annotated using controlled vocabulary from the Gene Ontology consortium. Protein localization data are inherently visual, and Organelle DB is a significant repository of biological images, housing 1500 micrographs of yeast cells carrying stained proteins. Furthermore, we report here the development of Organelle View, an extension of Organelle DB for the interactive visualization of organelles and subcellular structures in the budding yeast Saccharomyces cerevisiae. Organelle View offers a dimensional representation of a yeast cell; users can search Organelle View for proteins of interest, and the organelles housing these proteins will be highlighted in the cell image. Among other applications, Organelle View may serve as an educational aid engaging introductory biology students through a visually ‘fun’ interface. Organelle View can be accessed from the Organelle DB home page or directly at .
Background: The function of the fission yeast cullins Pcu1p and Pcu4p requires modification by the ubiquitin-related peptide Ned8p. A recent report by Lyapina et al. shows that the COP9/ signalosome (CSN), a multifunctional eight subunit complex, regulates Ned8p modification of Pcu1p. Disruption of caa1/csn1, which encodes subunit 1 of the putative S. pombe CSN, results in accumulation of Pcu1p exclusively in the modified form. However, it remained unclear whether this reflects global control of all cullins by the entire CSN complex.
Background The function of the fission yeast cullins Pcu1p and Pcu4p requires modification by the ubiquitin-related peptide Ned8p. A recent report by Lyapina et al. shows that the COP9/signalosome (CSN), a multifunctional eight subunit complex, regulates Ned8p modification of Pcu1p. Disruption of caa1/csn1 , which encodes subunit 1 of the putative S. pombe CSN, results in accumulation of Pcu1p exclusively in the modified form. However, it remained unclear whether this reflects global control of all cullins by the entire CSN complex. Results We demonstrate that multiple CSN subunits control Ned8p modification of Pcu3p, another fission yeast cullin, which, in complex with the RING domain protein Pip1p, forms a ubiquitin ligase that functions in cellular stress response. Pcu3p is modified by Ned8p on Lys 729 and accumulates exclusively in the neddylated form in cells lacking the CSN subunits 1, 3, 4, and 5. These CSN subunits co-elute with Pcu3p in gel filtration fractions corresponding to ∼ 550 kDa and specifically bind both native and Ned8p-modified Pcu3p in vivo . While CSN does not influence the subcellular localization of Pcu3p, Pcu3p-associated in vitro ubiquitin ligase activity is stimulated in the absence of CSN. Conclusions Taken together, our data suggest that CSN is a global regulator of Ned8p modification of multiple cullins and potentially other proteins involved in cellular regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.