More than 400 harbor seals, most of them immature, died along the New England coast between December 1979 and October 1980 of acute pneumonia associated with influenza virus, A/Seal/Mass/1/180 (H7N7). The virus has avian characteristics, replicates principally in mammals, and causes mild respiratory disease in experimentally infected seals. Concurrent infection with a previously undescribed mycoplasma or adverse environmental conditions may have triggered the epizootic. The similarities between this epizootic and other seal mortalities in the past suggest that these events may be linked by common biological and environmental factors.
The long-finned pilot whale, Globicephala melas, is a social, pelagic odontocete distributed widely in the cold temperate waters of the North Atlantic. Despite genetic, morphometric, physiological and observational studies, it remains unclear whether any population substructure exists. We have used eight highly polymorphic microsatellite loci to analyse samples from four disparate sampling sites: USA East Coast (Cape Cod), West Greenland, the Faeroe Islands and the UK. Our results indicate that substructure does exist, and is particularly pronounced between West Greenland and other sites. The magnitudes of the various pairwise comparisons do not support a simple isolation-by-distance model. Instead, the patterns of genetic differentiation suggest that population isolation occurs between areas of the ocean which differ in sea surface temperature. Such a mechanism is supported by the observation that temperature is a primary factor determining the relative distributions of two short-finned pilot whale (G. macrorhynchus) populations off the Pacific coast of Japan.
Rehabilitation of stranded marine mammals elicits polarized attitudes: initially done alongside display collections, but release of rehabilitated animals has become more common. Justifications include animal welfare, management of beach use conflict, research, conservation, and public education. Rehabilitation cost and risks have been identified that vary in degree supported by data rather than perception. These include conflict with fisheries for resources, ignorance of recipient population ecology, poor understanding of long-term survival, support of the genetically not-sofit, introduction of novel or antibiotic-resistant pathogens, harm to human health, and cost. Thus facilities must balance their welfare appeal against public education, habitat restoration, human impact reduction, and other conservation activities. Benefits to rehabilitating marine mammals are the opportunity to support the welfare of disabled animals and to publish good science and so advance our understanding of wild populations. In specific cases, the status of a population may make conservation the main reason for rehabilitation. These three reasons for rehabilitation lead to contrasting, and sometimes conflicting, management needs. We therefore outline a decision tree for rehabilitation managers using criteria for each management decision, based on welfare, logistics, conservation, research, and funding to define limits on the number of animals released to the wild.Key words: rehabilitation, release, conservation, education, animal welfare. SCOPEThe purpose of this review is to describe the recent history of and legal basis for the rehabilitation of marine mammals in the United States. We make no attempt to focus on other regions of the world. The reasons for and against, and uncertainties associated with, undertaking rehabilitation are discussed in the context of individual animal welfare, fundamental science, conservation biology, and ecosystem management agendas. A strategy for when rehabilitation with or without release should be attempted is then proposed, given these concerns. This review is less about science than it is values, ethics, and risks, given what we do and do not know. BACKGROUND
Phocine distemper virus (PDV) was first recognized in 1988 following a massive epidemic in harbor and grey seals in north-western Europe. Since then, the epidemiology of infection in North Atlantic and Arctic pinnipeds has been investigated. In the western North Atlantic endemic infection in harp and grey seals predates the European epidemic, with relatively small, localized mortality events occurring primarily in harbor seals. By contrast, PDV seems not to have become established in European harbor seals following the 1988 epidemic and a second event of similar magnitude and extent occurred in 2002. PDV is a distinct species within the Morbillivirus genus with minor sequence variation between outbreaks over time. There is now mounting evidence of PDV-like viruses in the North Pacific/Western Arctic with serological and molecular evidence of infection in pinnipeds and sea otters. However, despite the absence of associated mortality in the region, there is concern that the virus may infect the large Pacific harbor seal and northern elephant seal populations or the endangered Hawaiian monk seals. Here, we review the current state of knowledge on PDV with particular focus on developments in diagnostics, pathogenesis, immune response, vaccine development, phylogenetics and modeling over the past 20 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.