Cytokine receptors, which exist in membrane-bound and soluble forms, bind their ligands with comparable affinity. Although most soluble receptors are antagonists and compete with their membrane-associated counterparts for the ligands, certain soluble receptors are agonists. In these cases, complexes of ligand and soluble receptor bind on target cells to second receptor subunits and initiate intracellular signaling. The soluble receptors of the interleukin (IL)-6 family of cytokines (sIL-6R, sIL-11R, soluble ciliary neurotrophic factor receptor) are agonists capable of transmitting signals through interaction with the universal signal-transducing receptor for all IL-6 family cytokines, gp130. In vivo, the IL-6/sIL-6R complex stimulates several types of cells, which are unresponsive to IL-6 alone, as they do not express the membrane IL-6R. We have named this process trans-signaling. The generation of soluble cytokine receptors occurs via two distinct mechanisms-limited proteolysis and translation-from differentially spliced mRNA. We have demonstrated that a soluble form of the IL-6 family signaling receptor subunit gp130, which is generated by differential splicing, is the natural inhibitor of IL-6 trans-signaling responses. We have shown that in many chronic inflammatory diseases, including chronic inflammatory bowel disease, peritonitis, rheumatoid arthritis, asthma, as well as colon cancer, IL-6 trans-signaling is critically involved in the maintenance of a disease state, by promoting transition from acute to chronic inflammation. Moreover, in all these models, the course of the disease can be disrupted by specifically interfering with IL-6 trans-signaling using the soluble gp130 protein. The pathophysiological mechanisms by which the IL-6/sIL-6R complex regulates the inflammatory state are discussed.
Ciliary neurotrophic factor (CNTF) is a cytokine supporting the differentiation and survival of various cell types in the peripheral and central nervous systems. Its receptor complex consists of a non-signaling alpha chain, CNTFR, and two signaling beta chains, gp130 and the leukemia inhibitory factor receptor (LIFR). Striking phenotypic differences between CNTF- and CNTFR-deficient mice suggest that CNTFR serves as a receptor for a second, developmentally important ligand. We have identified this factor as a stable secreted complex of cardiotrophin-like cytokine (CLC) and the soluble receptor cytokine-like factor-1 (CLF). CLF expression was required for CLC secretion, and the complex acted only on cells expressing functional CNTF receptors. The CLF/CLC complex activated gp130, LIFR and signal transducer and activator of transcription 3 (STAT3) and supported motor neuron survival. Our results indicate that the CLF/CLC complex is a second ligand for CNTFR with potentially important implications in nervous system development.
Innate recognition of bacteria is a key step in the activation of inflammation and coagulation, and it is dependent on pathogen-associated molecular pattern (PAMP) ligation to Toll-like receptors (TLRs) and CD14. The dominant receptors activated when cells encounter a whole bacterium, which express several PAMPs, are poorly defined. Herein, we have stimulated various human cells with prototypic Gramnegative and Gram-positive bacteria. Receptor-dependent responses to whole bacteria were assessed using both TLRtransfected cells and specific monoclonal antibodies against TLRs, MD-2, and CD14. Enterobacteria-activated leukocytes and endothelial cells in a TLR4/MD-2-dependent manner, most likely via lipopolysaccharide (LPS). TLR2 activation was observed with a high bacterial inoculum, and in epithelial cells expressing TLR2 but not TLR4. Pseudomonas aeruginosa stimulated cells by both TLR2 and TLR4/MD-2. Gram-positive bacteria activated cells only at high concentrations, in a partially TLR2-dependent but TLR4/MD-2-independent manner. Either TLR or CD14 neutralization blocked activation to all bacterial strains tested with the exception of some Gram-positive strains in whole blood in which partial inhibition was noted. This study identifies dominant TLRs involved in responses to whole bacteria. It also validates the concept that host cell activation by bacterial pathogens can be therapeutically reduced by anti-TLR4, -TLR2, and -CD14 mAbs. IntroductionThe recognition of bacteria as nonself agents by mammalian cells is key in mounting an innate response to control infection. Several bacterial antigens, known as pathogen-associated molecular patterns (PAMPs), are sensed as "nonself" molecules by host immune cells, using receptors of the innate immune system. PAMPs are, for the majority, cell-wall molecules. Some PAMPs are found in both Gram-negative and Gram-positive bacteria, (lipopeptides, peptidoglycan, flagellin, and bacterial DNA). Others are specific either for Gram-negative bacteria (LPS), Gram-positive bacteria (lipoteichoic acid), or mycobacteria (lipoarabinomannan).Toll-like receptors (TLRs) belong to a family of leucine-rich repeat (LRR) proteins that are either expressed at the cell surface or in intracellular compartments. 1 They recognize and bind a wide variety of bacterial PAMPs, including LPS (typically recognized by TLR4, although some LPS species can be recognized by TLR2), lipopeptides (TLR1, TLR2, TLR6), lipoarabinomannan and lipoteichoic acid (TLR2 and other TLRs), flagellin (TLR5), and bacterial DNA (TLR9). [2][3][4] The ligation of PAMPs to TLRs induces a profound reprogramming of immune cells and activates several innate pathways such as inflammation, coagulation, and cell death. Some of the nucleotide-binding oligomerization domain (NOD) LRR proteins, such as Nod1 and Nod2, are also intracellular sensors for bacterial molecules and mediate inflammation on recognition of specific motifs in bacterial peptidoglycan. 5 Other receptors also recognize PAMPs and are essential for the phagocytosis of b...
IL-27 is formed by the association of a cytokine subunit, p28, with the soluble cytokine receptor EBV-induced gene 3 (EBI3). The IL-27R comprises gp130 and WSX-1. The marked difference between EBI3−/− and WSX-1−/− mice suggests that p28 has functions independent of EBI3. We have identified an alternative secreted complex formed by p28 and the soluble cytokine receptor cytokine-like factor 1 (CLF). Like IL-27, p28/CLF is produced by dendritic cells and is biologically active on human NK cells, increasing IL-12- and IL-2-induced IFN-γ production and activation marker expression. Experiments with Ba/F3 transfectants indicate that p28/CLF activates cells expressing IL-6Rα in addition to the IL-27R subunits. When tested on CD4 and CD8 T cells, p28/CLF induces IL-6Rα-dependent STAT1 and STAT3 phosphorylation. Furthermore, p28/CLF inhibits CD4 T cell proliferation and induces IL-17 and IL-10 secretion. These results indicate that p28/CLF may participate in the regulation of NK and T cell functions by dendritic cells. The p28/CLF complex engages IL-6R and may therefore be useful for therapeutic applications targeting cells expressing this receptor. Blocking IL-6R using humanized mAbs such as tocilizumab has been shown to be beneficial in pathologies like rheumatoid arthritis and juvenile idiopathic arthritis. The identification of a new IL-6R ligand is therefore important for a complete understanding of the mechanism of action of this emerging class of immunosuppressors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.