Guidelines for determining nonprobabilistic sample sizes are virtually nonexistent. Purposive samples are the most commonly used form of nonprobabilistic sampling, and their size typically relies on the concept of “saturation,” or the point at which no new information or themes are observed in the data. Although the idea of saturation is helpful at the conceptual level, it provides little practical guidance for estimating sample sizes, prior to data collection, necessary for conducting quality research. Using data from a study involving sixty in-depth interviews with women in two West African countries, the authors systematically document the degree of data saturation and variability over the course of thematic analysis. They operationalize saturation and make evidence-based recommendations regarding nonprobabilistic sample sizes for interviews. Based on the data set, they found that saturation occurred within the first twelve interviews, although basic elements for metathemes were present as early as six interviews. Variability within the data followed similar patterns.
Data saturation is the most commonly employed concept for estimating sample sizes in qualitative research. Over the past 20 years, scholars using both empirical research and mathematical/statistical models have made significant contributions to the question: How many qualitative interviews are enough? This body of work has advanced the evidence base for sample size estimation in qualitative inquiry during the design phase of a study, prior to data collection, but it does not provide qualitative researchers with a simple and reliable way to determine the adequacy of sample sizes during and/or after data collection. Using the principle of saturation as a foundation, we describe and validate a simple-to-apply method for assessing and reporting on saturation in the context of inductive thematic analyses. Following a review of the empirical research on data saturation and sample size estimation in qualitative research, we propose an alternative way to evaluate saturation that overcomes the shortcomings and challenges associated with existing methods identified in our review. Our approach includes three primary elements in its calculation and assessment: Base Size, Run Length, and New Information Threshold. We additionally propose a more flexible approach to reporting saturation. To validate our method, we use a bootstrapping technique on three existing thematically coded qualitative datasets generated from indepth interviews. Results from this analysis indicate the method we propose to assess and report on saturation is feasible and congruent with findings from earlier studies.
Few empirical studies exist to guide researchers in determining the number of focus groups necessary for a research study. The analyses described here provide foundational evidence to help researchers in this regard. We conducted a thematic analysis of 40 focus groups on health-seeking behaviors of African American men in Durham, North Carolina. Our analyses revealed that more than 80% of all themes were discoverable within two to three focus groups, and 90% were discoverable within three to six focus groups. Three focus groups were also enough to identify all of the most prevalent themes within the data set. These empirically based findings suggest focus group sample sizes that differ from many of the ''rule of thumb'' recommendations in the existing literature. We discuss the relative generalizability of our findings to other study contexts, and we highlight some methodological questions about adequate sample sizes for focus group research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.