The lyso-phospholipid sphingosine 1-phosphate modulates lymphocyte trafficking, endothelial development and integrity, heart rate, and vascular tone and maturation by activating G-protein-coupled sphingosine 1-phosphate receptors. Here we present the crystal structure of the sphingosine 1-phosphate receptor 1 fused to T4-lysozyme (S1P1-T4L) in complex with an antagonist sphingolipid mimic. Access to the binding pocket is completely occluded by the N-terminus and extracellular loops of the receptor. Access is gained by ligands entering laterally between helices I and VII within the transmembrane region of the receptor. This structure, along with mutagenesis, agonist structure-activity relationship data and modeling, provides a detailed view of the molecular recognition and hydrophobic volume triggering that activates S1P1 resulting in the modulation of immune and stromal cell responses.
Many members of the chemokine receptor family of G protein-coupled receptors utilize multiple endogenous ligands. However, differences between the signaling properties of multiple chemokines through a single receptor have yet to be well characterized. In this study we investigated the early signaling events of CCR7 initiated by its two endogenous ligands, CCL19 and CCL21. Both CCL19 and CCL21 induce G protein activation and calcium mobilization with equal potency. However, only activation by CCL19, not CCL21, promotes robust desensitization of endogenous CCR7 in the human T cell lymphoma cell line H9. Desensitization occurs through the induction of receptor phosphorylation and -arrestin recruitment (shown in HEK293 cells expressing CCR7-FLAG). The sites of CCL19-induced phosphorylation were mapped by mutating to alanines the serines and threonines found within kinase phosphorylation consensus sequences in the carboxyl terminus of CCR7. A cluster of sites, including Thr-373-376 and Ser-378 is important for CCL19-mediated phosphorylation of the receptor, whereas residues serine 356, 357, 364, and 365 are important for basal receptor phosphorylation by protein kinase C. Activation of CCR7 by both ligands leads to signaling to the ERK1/2 mitogen-activated protein kinase pathway. However, CCL19 promotes 4-fold more ERK1/2 phosphorylation than does CCL21. The mechanism by which CCL19 activates ERK1/2 was determined to be -arrestin-dependent, because it is reduced both by depletion of -arrestin-2 with small interfering RNA and by elimination of the phosphorylation sites in the tail of the receptor. Taken together, these findings demonstrate that CCL19 and CCL21 place CCR7 in functionally distinct conformations that are independent of their G protein-coupling potency: one that allows the efficient desensitization of the receptor and activation of ERK1/2, and another that is impaired in these functions.
Peptide agonists and antagonists of the human gonadotropin-releasing hormone receptor (GnRH-R) are widely used to treat a range of reproductive hormone related diseases. Recently, nonpeptide, orally available GnRH-R antagonists have emerged from several chemical classes. To understand how a relatively large peptide-binding pocket can recognize numerous nonpeptide ligands, we undertook a systematic mapping of GnRH-R residues involved in the binding of three nonpeptide antagonists. A region composed of the extracellular portions of transmembrane helices 6 and 7, extracellular loop 3, and the N-terminal domain significantly contributed to nonpeptide antagonist binding. However, each molecule was affected by a different subset of residues in these regions, indicating that each appears to occupy distinct, partially overlapping subregions within the more extensive peptide-binding pocket. Moreover, the resulting receptor interaction maps provide a basis to begin to reconcile structure-activity relationships between various nonpeptide and peptide series and facilitate the design of improved therapeutic agents.
The discovery of novel uracil phenylethylamines bearing a butyric acid as potent human gonadotropin-releasing hormone receptor (hGnRH-R) antagonists is described. A major focus of this optimization was to improve the CYP3A4 inhibition liability of these uracils while maintaining their GnRH-R potency. R-4-{2-[5-(2-fluoro-3-methoxyphenyl)-3-(2-fluoro-6-[trifluoromethyl]benzyl)-4-methyl-2,6-dioxo-3,6-dihydro-2H-pyrimidin-1-yl]-1-phenylethylamino}butyric acid sodium salt, 10b (elagolix), was identified as a potent and selective hGnRH-R antagonist. Oral administration of 10b suppressed luteinizing hormone in castrated macaques. These efforts led to the identification of 10b as a clinical compound for the treatment of endometriosis.
Suppression of the hypothalamic-pituitary-gonadal axis by peptides that act at the GnRH receptor has found widespread use in clinical practice for the management of sex-steroid-dependent diseases (such as prostate cancer and endometriosis) and reproductive disorders. Efforts to develop orally available GnRH receptor antagonists have led to the discovery of a novel, potent nonpeptide antagonist, NBI-42902, that suppresses serum LH concentrations in postmenopausal women after oral administration. Here we report the in vitro and in vivo pharmacological characterization of this compound. NBI-42902 is a potent inhibitor of peptide radioligand binding to the human GnRH receptor (K(i) = 0.56 nm). Tritiated NBI-42902 binds with high affinity (K(d) = 0.19 nm) to a single class of binding sites and can be displaced by a range of peptide and nonpeptide GnRH receptor ligands. In vitro experiments demonstrate that NBI-42902 is a potent functional, competitive antagonist of GnRH stimulated IP accumulation, Ca(2+) flux, and ERK1/2 activation. It did not stimulate histamine release from rat peritoneal mast cells. Finally, it is effective in lowering serum LH in castrated male macaques after oral administration. Overall, these data provide a benchmark of pharmacological characteristics required for a nonpeptide GnRH antagonist to effectively suppress gonadotropins in humans and suggest that NBI-42902 may have clinical utility as an oral agent for suppression of the hypothalamic-pituitary-gonadal axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.