Pentamers of the L1 major capsid protein of human papillomavirus (HPV type 11) were purified after expression in E. coli and analyzed for the kinetics of in vitro capsid self-assembly using multi-angle light scattering (MALS). Pentamers self-assembled into capsid-like structures at a rate that was a function of protein concentration. The kinetics of capsid formation were sigmoidal with a concentration-dependent lag phase, followed by a rapid increase in polymerization. Nucleation size and the rate order of subsequent subunit addition were calculated from the concentration dependence of the extent of capsid formation and the rate of the fast phase, respectively. Assembly was second order with a nucleation size of two pentamers. Thus, we suggest that dimers of pentamers are the nucleus for L1 assembly into capsid-like structures, with rapid sequential addition of single pentamers to the growing shell. Although studied in vitro without accessory factors that may be present in vivo, these data are in contrast with the "five-around-one" assembly nucleus previously proposed for polyomaviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.