Seasonal Affective Disorder (SAD) is one of the most common mood disorders with depressive symptoms recurring in winter when there is less sunlight. The fact that light is the most salient factor entraining circadian rhythms leads to the phase-shifting hypothesis, which suggests that the depressive episodes of SAD are caused by misalignments between the circadian rhythms and the habitual sleep times. However, how changes in environmental lighting conditions lead to the fluctuations in mood is largely unknown. The objective of this study is to develop an animal model for some of the features/symptoms of SAD using the diurnal grass rats Arvichantis niloticus and to explore the neural mechanisms underlying the light associated mood changes. Animals were housed in either a 12∶12 hr bright light∶dark (1000lux, BLD) or dim light∶dark (50lux, DLD) condition. The depression-like behaviors were assessed by sweet-taste Saccharin solution preference (SSP) and forced swimming test (FST). Animals in the DLD group showed higher levels of depression-like behaviors compared to those in BLD. The anxiety-like behaviors were assessed in open field and light/dark box test, however no significant differences were observed between the two groups. The involvement of the circadian system on depression-like behaviors was investigated as well. Analysis of locomotor activity revealed no major differences in daily rhythms that could possibly contribute to the depression-like behaviors. To explore the neural substrates associated with the depression-like behaviors, the brain tissues from these animals were analyzed using immunocytochemistry. Attenuated indices of 5-HT signaling were observed in DLD compared to the BLD group. The results lay the groundwork for establishing a novel animal model and a novel experimental paradigm for SAD. The results also provide insights into the neural mechanisms underlying light-dependent mood changes.
Seasonal affective disorder (SAD), a major depressive disorder recurring in the fall and winter, is caused by the reduction of light in the environment, and its depressive symptoms can be alleviated by bright light therapy. Both circadian and monoaminergic systems have been implicated in the etiology of SAD. However, the underlying neural pathways through which light regulates mood are not well understood. The present study utilized a diurnal rodent model, Arvicanthis niloticus, to explore the neural pathways mediating the effects of light on brain regions involved in mood regulation. Animals kept in constant darkness received light exposure in early subjective day, the time when light therapy is usually applied. The time course of neural activity following light exposure was assessed using Fos as a marker in the following brain regions/cells: the suprachiasmatic nucleus (SCN), orexin neurons in the perifornical-lateral hypothalamic area (PF-LHA) and the dorsal raphe nucleus (DRN). A light-induced increase in Fos expression was observed in orexin neurons and the DRN, but not in the SCN. As the DRN is densely innervated by orexinergic inputs, the involvement of orexinergic signaling in mediating the effects of light on the DRN was tested in the second experiment. The animals were injected with the selective orexin receptor type 1 (OXR1) antagonist SB-334867 prior to the light exposure. The treatment of SB-334867 significantly inhibited the Fos induction in the DRN. The results collectively point to the role of orexin neurons in mediating the effects of light on the mood-regulating monoaminergic areas, suggesting an orexinergic pathway that underlies light-dependent mood fluctuation and the beneficial effects of light therapy.
Seasonal affective disorder (SAD) is a major depressive disorder that reoccurs in the fall and winter when day-lengths get short. It is well accepted that day-length is encoded by the principal circadian clock located in the suprachiasmatic nucleus (SCN), but very little is known about day-length encoding in diurnal mammals. The present study utilized the grass rat, Arvicanthis niloticus, to investigate how the circadian system responds to photoperiodic changes in a diurnal mammal that shows day-length dependent mood changes. The animals were initially housed in equatorial day-length (12hr, EP) followed by either long (16hr, LP) or short (8hr, SP) photoperiods. The LP animals showed an expansion of the peak phase of the PER1 and PER2 rhythm in the SCN as well as an extended behavioral active phase. In contrast, the SP animals did not show any compression of their active phase nor a change in the peak duration of PER1 or PER2 expression, compared to those in EP. The results suggest that the circadian system in the diurnal grass rats is less responsive when day-lengths get short compared to when they get longer. The depression-like behaviors were assessed using sweet solution preference (SSP) and forced swimming test (FST). Animals in the SP group showed decreased SSP and increased immobility time in FST as compared to the EP group, suggesting a depressive phenotype. The present study serves as the first step toward exploring the role the circadian system plays in SAD using a diurnal rodent model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.