The utility of cells cultured from the mitral valve as models of myxomatous diseases needs to be properly validated. In this study valve interstitial cells (VICs) and valve endothelial cells (VECs) were cultured from normal and diseased canine mitral valves in 2% (v/v) or 10% FBS media, in the presence of TGFβ1, 2 and 3, the TGFβ RI kinase inhibitor SB431542 and TGFβ neutralising antibodies, 5HT and the 5HT2RB antagonist LY272015. Cultures were examined by morphology, transcriptomic profiling, protein expression of the cell specific markers αSMA and SM22α (VICs), and CD31 (VECs), deposition of proteoglycans (PG), the PG versican, and the TGFβs themselves. VECs derived from normal valves were CD31+/αSMA-, but those from diseased valves were αSMA+, indicating endothelial-to-mesenchymal (EndoMT) transition had occurred. The TGFβs induced EndoMT in normal VECs, and this was abolished by SB431542, with significant changes in αSMA, CD31 and HAS2 expression (P<0.05). Normal VICs cultured in 10% FBS media were αSMA+ (activated myofibroblast (disease) phenotype), but were αSMA- when grown in 2% FBS. VICs from diseased dogs were αSMA+ in 2% FBS (retention of the activated myofibroblast disease phenotype), with significantly increased TGFβ1 expression (P<0.05) compared to normal cells. Treatment of normal and diseased VICs with the TGFβs significantly increased expression of αSMA, SM22α, versican, the TGFβs themselves, and deposition of PGs (P<0.05), with TGFβ1 being the most potent activator. These effects were either abolished or markedly reduced by SB431542 and a pan-TGFβ neutralizing antibody (P<0.05). SB431542 also markedly reduced αSMA expression in VICs from diseased valves, but 5HT and LY272015 had no effect on VIC phenotype. Transcriptomic profiling identified clear differences in gene expression for the different conditions and treatments that partially matched that seen in native diseased valve tissue, including changes in expression of ACTA2 (αSMA), 5HTR2B , TAGLN (SM22α) and MYH10 (SMemb), gene ontology terms and canonical signalling pathways. Normal and diseased VICs and normal VECs from canine mitral valves can be successfully grown in culture with retention of phenotype, which can be manipulated using TGFβ1 and the TGFβ RI kinase inhibitor SB431542. This optimized cell system can now be used to model MMVD to elucidate disease mechanisms and identify key regulators of disease progression.
Myxomatous mitral valve disease (MMVD) is the most common acquired canine cardiovascular disease and shares many similarities with human mitral valvulopathies. While transcriptomic datasets are available for the end-stage disease in both species, there is no information on how gene expression changes as the disease progresses, such that it cannot be stated with certainty if the changes seen in end-stage disease are casual or consequential. In contrast to humans, the disease in dogs can be more readily examined as it progresses, and this allows an opportunity for insight into disease pathogenesis relevant to both species. The aim of this study was to identify changes in valve gene expression as canine MMVD advances over an entire lifetime , from normal (grade 0) to severely affected (grade 4), and differences in gene expression comparing normal and disease areas of the same valve. Transcriptomic profiling identified 1002 differentially expressed genes (DEGs) across all four disease grades when compared with normal valves with the greatest number of DEGs in grade 3 (673) and grade 4 (507). DEGs were associated with a large number of gene families, including genes encoding cytoskeletal filaments, peptidases, extra-cellular matrix (ECM) proteins, chemokines and integrins. Gene enrichment analysis identified significant grade-dependent changes in gene clustering, with clusters trending both up and down as disease progressed. Significant grade-dependent changes in hallmark disease gene expression intensity were identified, including ACTA2, HTR2B, MMP12, and CDKN2A. Gene Ontology terms were dominated by terms for ECM and inflammation with TGFβ1, TNF, IFGN identified as the top upstream regulators in both whole and dissected diseased valve samples. These data show that while disease progression in MMVD is associated with increasing numbers of DEGs, TGFβ appears to be the dominant signaling pathway controlling pathogenesis irrespective of disease severity.
Myxomatous mitral valve disease (MMVD) is the single most common acquired heart disease of the dog, but is also of emerging importance in human medicine, with some features of the disease shared between both species. There has been increased understanding of this disease in recent years, with most research aiming to elucidate the cellular and molecular events of disease pathogenesis. For gross and histological changes, much of our understanding is based on historical studies and there has been no comprehensive reappraisal of the pathology of MMVD. This paper reviews the gross, histological, ultrastructural, cellular and molecular changes in canine MMVD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.