Insulin-like growth factor-I (IGF-I) has been shown to be a potent agent in promoting the growth and differentiation of oligodendrocyte precursors, and in stimulating myelination during development and following injury. To definitively determine whether IGF-I acts directly on the cells of oligodendrocyte lineage, we generated lines of mice in which the type 1 IGF receptor gene (igf1r) was conditionally ablated either in Olig1 or proteolipid protein expressing cells (termed IGF1R pre-oligo-ko and IGF1R oligo-ko mice, respectively). Compared to wild type mice, IGF1R pre-oligo-ko mice had a decreased volume (by 35% to 55 %) and cell number (by 54% to 70%) in the corpus callosum (CC) and anterior commissure at 2 and 6 weeks of age, respectively. IGF1R oligo-ko mice by 25 weeks of age also showed reductions, albeit less marked, in CC volume and cell number. Unlike astrocytes, the percentage of NG2 + oligodendrocyte precursors was decreased by ~13% in 2-week-old IGF1R pre-oligo-ko mice, while the percentage of CC1 + mature oligodendrocytes was decreased by ~24% in 6-week-old IGF1R pre-oligo-ko mice and ~25% in 25-week-old IGF1R oligo-ko mice. The reduction in these cells is apparently a result of decreased proliferation and increased apoptosis. These results indicate that IGF-I directly affects oligodendrocytes and myelination in vivo via IGF1R, and that IGF1R signaling in the cells of oligodendrocyte lineage is required for normal oligodendrocyte development and myelination. These data also provide a fundamental basis for developing strategies with the potential to target IGF-IGF1R signaling pathways in oligodendrocyte lineage cells for the treatment of demyelinating disorders.
Insulin-like growth factor-I (IGF-I) is widely expressed in the central nervous system (CNS). Whereas during normal development IGF-I is expressed predominantly by neurons and to a much lesser degree by glial cells, its expression in astrocytes, and often in microglia, is increased during and/or after variety of CNS injuries. Recently we have generated a new line of IGF-I Tg mice, called IGF-I(Ast/Tet-Off) Tg mice, in which IGF-I transgene is expressed specifically in astrocytes and is tightly controlled by the tetracycline analog doxycycline. In this study we examined whether IGF-I derived from astrocytes is capable of promoting neural cell growth during development. When the IGF-I transgene is allowed to be expressed, IGF-I(Ast/Tet-Off) Tg mice exhibit markedly increases in 1) brain weight; 2) brain DNA and protein abundance; and 3) number of neurons, oligodendrocytes, and astrocytes, as well as myelination, findings similar to those observed in our other lines of Tg mice that express IGF-I transgene predominantly in neurons. Unlike Tg mice with neuron-specific IGF-I expression, which manifest marked increases in the concentrations of oligodendrocyte/myelin-specific proteins, however, IGF-I(Ast/Tet-Off) Tg mice exhibit an increase in the concentration of glial fibrillary acidic protein, an astrocyte-specific protein. Furthermore, when transgene expression is blunted, brain overgrowth in IGF-I(Ast/Tet-Off) Tg mice ceases. Our data indicate that astrocyte-derived IGF-I is capable of promoting neural cells growth in vivo. Our data also suggest that IGF-I's actions in CNS depend in part on the location of its expression and cellular microenvironment and that continuous presence of IGF-I expression is necessary for brain overgrowth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.