Many large scale physics-based simulations which take place on PC clusters or supercomputers produce huge amounts of data including vector fields. While these vector data such as electromagnetic fields, fluid flow fields, or particle paths can be represented by lines, the sheer number of the lines overwhelms the memory and computation capability of a high-end PC used for visualization. Further, very dense or intertwined lines, rendered with traditional visualization techniques, can produce unintelligible results with unclear depth relationships between the lines and no sense of global structure. Our approach is to apply a lighting model to the lines and sample them into an anisotropic voxel representation based on spherical harmonics as a preprocessing step. Then we evaluate and render these voxels for a given view using traditional volume rendering. For extremely large line based datasets, conversion to anisotropic voxels reduces the overall storage and rendering for O(n) lines to O(1) with a large constant that is still small enough to allow meaningful visualization of the entire dataset at nearly interactive rates on a single commodity PC.
An international team comprising SLAC, KEK, FNAL, JLAB and DESY is collaborating on the design, fabrication and test of a low loss, 1.3 GHz 9-cell SRF structure as a potential improvement for the ILC main linac. The advantages of this structure over the TESLA structure include lower cryogenic loss, shorter rise time, and less stored energy. Among the issues to be addressed in this design are HOM damping, Lorentz force detuning and multipacting. We will report on HOM damping calculations using the parallel finite element eigenmode solver Omega3P and the progress made towards an optimized design. Studies on multipacting and estimates of the Lorentz force detuning will also be presented.
Future high-energy accelerators such as the Next Linear Collider (NLC) will accelerate multi-bunch beams of high current and low emittance to obtain high luminosity, which put stringent requirements on the accelerating structures for efficiency and beam stability. While numerical modeling has been quite standard in accelerator R&D, designing the NLC accelerating structure required a new simulation capability because of the geometric complexity and level of accuracy involved. Under the US DOE Advanced Computing initiatives (first the Grand Challenge and now SciDAC), SLAC has developed a suite of electromagnetic codes based on unstructured grids and utilizing high performance computing to provide an advanced tool for modeling structures at accuracies and scales previously not possible. This paper will discuss the code development and computational science research (e.g. domain decomposition, scalable eigensolvers, adaptive mesh refinement) that have enabled the large-scale simulations needed for meeting the computational challenges posed by the NLC as well as projects such as the PEP-II and RIA. Numerical results will be presented to show how high performance computing has made a qualitative improvement in accelerator structure modeling for these accelerators, either at the component level (single cell optimization), or on the scale of an entire structure (beam heating and long range wakefields).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.