An adaptation of the in vitro perfused hydronephrotic rat kidney model allowing in situ measurement of arteriolar membrane potentials is described. At a renal perfusion pressure of 80 mmHg, resting membrane potentials of interlobular arteries (22 +/- 2 microns) and afferent (14 +/- 1 microns) and efferent arterioles (12 +/- 1 microns) were -40 +/- 2 (n = 8), -40 +/- 1 (n = 45), and -38 +/- 2 mV (n = 22), respectively (P = 0.75). Using a dual-pipette system to stabilize the impalement site, we measured afferent and efferent arteriolar membrane potentials during angiotensin II (ANG II)-induced vasoconstriction. ANG II (0.1 nM) reduced afferent arteriolar diameters from 13 +/- 1 to 8 +/- 1 microns (n = 8, P = 0.005) and membrane potentials from -40 +/- 2 to -29 +/- mV (P = 0.012). ANG II elicited a similar vasoconstriction in efferent arterioles, decreasing diameters from 13 +/- 1 to 8 +/- 1 microns (n = 8, P = 0.004), but failed to elicit a significant depolarization (-39 +/- 2 for control; -36 +/- 3 mV for ANG II; P = 0.27). Our findings thus indicate that resting membrane potentials of pre- and postglomerular arterioles are similar and lie near the threshold activation potential for L-type Ca channels. ANG II-induced vasoconstriction appears to be closely coupled to membrane depolarization in the afferent arteriole, whereas mechanical and electrical responses appear to be dissociated in the efferent arteriole.
Prostatic adenocarcinoma is an epithelial malignancy characterized by marked histological heterogeneity. It most often has a multifocal distribution within the gland, and different Gleason grades may be present within different foci. Data from our group and others have shown that the genomic deletion of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor gene and the disruption of the ETS gene family have a central role in prostate cancer and are likely to be associated with Gleason grade. In this study, prostate cancer samples were systematically analyzed to determine whether there was concordance between PTEN losses and TMPRSS2-ERG fusion rearrangements, within or between foci in multifocal disease, using well-annotated tissue microarrays (TMAs) consisting of 724 cores derived from 142 radical prostatectomy specimens. Three-color fluorescence in situ hybridization analysis of both the PTEN deletion and the TMPRSS2-ERG fusion was used to precisely map genetic heterogeneity, both within and between tumor foci represented on the TMA. PTEN deletion was observed in 56 of 134 (42%) patients (hemizygous ¼ 42 and homozygous ¼ 14). TMPRSS2-ERG fusion was observed in 63 of 139 (45%) patients. When analyzed by Gleason pattern for a given TMA core, PTEN deletions were significantly associated with Gleason grades 4 or 5 over grade 3 (Po0.001). Although TMPRSS2-ERG fusions showed a strong relationship with PTEN deletions (P ¼ 0.007), TMPRSS2-ERG fusions did not show correlation with Gleason grade. The pattern of genetic heterogeneity of PTEN deletion was more diverse than that observed for TMPRSS2-ERG fusions in multifocal disease. However, the marked interfocal discordance for both TMPRSS2-ERG fusions and PTEN deletions was consistent with the concept that multiple foci of prostate cancer arise independently within the same prostate, and that individual tumor foci can have distinct patterns of genetic rearrangements.
Nutraceuticals are 'natural' substances isolated or purified from food substances and used in a medicinal fashion. Several naturally derived food substances have been studied in prostate cancer in an attempt to identify natural preventative therapies for this disease. Vitamin E, selenium, vitamin D, green tea, soy, and lycopene have all been examined in human studies. Other potential nutraceuticals that lack human data, most notably pomegranate, might also have a preventative role in this disease. Unfortunately, most of the literature involving nutraceuticals in prostate cancer is epidemiological and retrospective. The paucity of randomized control trial evidence for the majority of these substances creates difficulty in making clinical recommendations particularly when most of the compounds have no evidence of toxicity and occur naturally. Despite these shortcomings, this area of prostate cancer prevention is still under intense investigation. We believe many of these 'natural' compounds have therapeutic potential and anticipate future studies will consist of well-designed clinical trials assessing combinations of compounds concurrently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.