Network management relies on an up-to-date and accurate view of many traffic metrics for tasks such as traffic engineering (e.g., heavy hitters), anomaly detection (e.g., entropy of source addresses), and security (e.g., DDoS detection). Obtaining an accurate estimate of these metrics while using little router CPU and memory is challenging. This in turn has inspired a large body of work in data streaming devoted to developing optimized algorithms for individual monitoring tasks, as well as recent approaches to make it simpler to implement these algorithms (e.g., OpenSketch). While this body of work has been seminal, we argue that this trajectory of crafting special purpose algorithms is untenable in the long term. We make a case for a "RISC" approach for flow monitoring analogous to a reduced instruction set in computer architecture-a simple and generic monitoring primitive from which a range of metrics can be computed with high accuracy. Building on recent theoretical advances in universal streaming, we show that this "holy grail" for flow monitoring might be well within our reach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.