Bacillus stearothermophilus NCA 2184 lost viability and subsequently released cytoplasmic components when suspended in 0.1 M tris(hydroxymethyl)aminomethane (Tris) buffer (pH 7.2) and incubated at 60 degrees C. Cell lysis was prevented by the addition of 10 mM CaCl2 to the Tris-buffer suspension. Cells which were incubated under anaerobic conditions for 20 min in the growth medium before they were collected were stable in the Tris-buffer suspension without added calcium. Anaerobic incubation effected an increase in membrane cardiolipin which appeared to be related to the increase in the thermostability of the cells.
This study uses the high-temperature formaldehyde sterilization system provided by the Harvey Chemiclave, manufactured by Barnstead Thermolyne Corporation (Dubuque, IA), as a model to investigate certain phenomena associated with gaseous chemical sterilization systems. Although formaldehyde sterilization presents some unique and complex system attributes, the current studies provide helpful insights into general sterilization methods by chemicals in the gaseous state. Both population recovery and fraction negative (FN) techniques were used to assay surviving populations from biological indicators of the organism Geobacillus stearothermophilus following exposure to incremental Chemiclave cycles. Models 5500 and 6000 of the Barnstead/Thermolyne Chemiclave were used in the study. Reusable instruments such as scalers, explorers, and various hinged pieces were tested in minimum versus maximum load studies. Population recovery study results demonstrated that lethality rates increase with time throughout the Chemiclave sterilization process and that there are significant variations in lethality according to load location. The population recovery data in conjunction with the FN studies and temperature data confirm that one-half the full-cycle time is not a good estimator of one-half the full-cycle lethality because lethality curves are concave downward and lethality varies by load location. This conclusion can also be applied to other types of gaseous, chemical sterilization such as ethylene oxide. The work outlined in this study was a result of investigations into the parameters affecting formaldehyde chemical vapor sterilization with the Harvey Chemiclave sterilizer. During these studies, it became apparent that results clearly depicted the effects of continued acceleration of the rate of microbial lethality, as well as variations in delivered lethality as a function of position in the sterilizer load. This publication focuses on these observations because they are important considerations for understanding general concepts of sterilization efficacy in process applications. Erroneous conclusions can be drawn when one evaluates sterilization without a thorough understanding of affecting variables.
Recovered human and animal tissues are used extensively in surgery for wound repair and reconstruction. In preparation for the validation of chemical disinfection and radiation sterilization processes, studies were performed on the development and validation of quantitative bioburden recovery methods for human bone and soft tissue and also for porcine dermis. The use of a swab-based method was not considered due to the known poor efficiency of recovery for this technique. The "exhaustive extraction" and "inoculated product" approaches to validation of a bioburden recovery efficiency factor have inherent strengths and weaknesses; in this study, tissues were inoculated and also subjected to a series of extractions to determine if/when "exhaustion" occurred. Femoral and tibial shaft rings, iliac crest wedges, sections of Achilles tendon, a soft tissue composite sample, and porcine dermis, were inoculated at several sites with Bacillus atrophaeus spores, and then subjected to either shaking by hand, mechanical shaking, or sonication plus mechanical shaking. Each of these methods of agitation were performed in combination with three rinse (extraction) fluids: phosphate buffer (Butterfield's buffer), phosphate buffer with 0.2% polysorbate 80 (a surfactant), and water with 1% peptone and 1% polysorbate 80 (Fluid D). The highest recovery efficiencies were observed with sonication plus mechanical shaking; of the three extraction media, Fluid D gave the highest first-rinse recovery efficiency (65%) and Butterfield's buffer gave the lowest (39%). Each of the three recovery methods, however appeared to reach "exhaustion", a subsequent rinse giving less than 10% of the recovery found in the first rinse. The results demonstrated the importance of performing bioburden method development and validation studies. The method validation strategy described here, using a combination of tissue inoculation and repetitive extraction, showed the superiority of sonication plus mechanical shaking using Fluid D as the rinse medium. In addition, the use of only the exhaustive extraction approach could have resulted in the development of a methodology that consistently underestimated the bioburden present on/in recovered tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.