In Syrian hamster embryo cells, intracellular acidification (but not alkalization) results in proliferation, immediate-early-gene expression and tyrosine phosphorylation. In addition, both intracellular acidification and alkalization result in serinelthreonine phosphorylation and de novo protein synthesis of specific proteins. Calcium is not mobilized in response to either intracellular alkalization or acidification. Neither intracellular acidification nor alkalization altered the serum proliferative signal while intracellular alkalization (but not acidification) reduced the epidermal-growth-factorinduced proliferative signal, tyrosine phosphorylation and immediate-early-gene expression. Finally, intracellular acidification (but not alkalization) could induce immediate-early-gene expression in cells growing in the presence of serum, indicating that the pH signalling pathway is not down modulated by the serum signalling pathway. These results, while indirect, indicate that hydrogen ions may play an important role in mitogen-signal transduction in Syrian hamster embryo cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.