The fepA-entD and fes-entF operons in the enterobactin synthesis and transport system are divergently transcribed from overlapping promoters, and both are inhibited by the Fur repressor protein under iron-replete conditions. A plasmid harboring divergentfepA'-'phoA andfes-entF'-'lacZ fusions, both under the control of this bidirectional regulatory region, was constructed for the purpose of monitoring changes in expression of the two operons simultaneously. Deletion analysis, site-directed mutagenesis, and primer extension were employed to define both a single promoter governing the expression of fes-entF and two tandemly arranged promoters giving rise to the opposingfepA-entD transcript. A single Fur-binding site that coordinately regulates the expression of all transcripts emanating from this control region was identified by in vitro protection from DNase I nicking. The substitution of one base pair in the Fur recognition sequence relieved Fur repression but did not change the in vitro affinity of Fur for its binding site. Additional mutations in a limited region outside of the promoter determinants for either transcript inhibited expression of bothfes andfepA. These observations suggest a mechanism of Fur-mediated regulation in this compact control region that may involve other regulatory components.Bacteria adapt to environmental change by dramatic shifts in gene expression and protein production. In response to iron deprivation, most oxygen-metabolizing microorganisms produce and excrete small iron-chelating molecules called siderophores (36) and perform the specific transport functions required for the retrieval of their ferrated derivatives (41). Escherichia coli typically synthesizes and secretes the catecholbased siderophore enterobactin, and some isolates produce the hydroxamate derivative aerobactin, as well.The genes required for enterobactin biosynthesis (ent) and transport (fep) map in a cluster at minute 13 (2) along with fes (for ferric enterobactin esterase); fepE, which encodes a protein of unknown function that is localized on the periplasmic side of the cytoplasmic membrane (13); and two other genes encoding uncharacterized protein products designated P15 (40) and P43 (50) to indicate their approximate sizes. Expression of the enterobactin system emanates from three regulatory regions containing divergently oriented promoters: one located between fepB and the entCEBA(P15) operon (8,44), one between fepD and P43 (50), and a third between fepA and fes (45). Except forfepE, which is constitutively expressed from its own weak promoter (13), the six transcripts arising from these three promoter regions encode all of the genes in the enterobactin gene cluster and are induced when the external iron supply becomes depleted (8,22,45,50). This sensitivity to iron limitation is shared by the aerobactin system and other genes and operons throughout the chromosome (6, 30), many * Corresponding author. Mailing address:
Plant pathogenicity is rare in the genus Streptomyces, with only a dozen or so species possessing this trait out of the more than 900 species described. Nevertheless, such species have had a significant impact on agricultural economies throughout the world due to their ability to cause important crop diseases such as potato common scab, which is characterized by lesions that form on the potato tuber surface. All pathogenic species that cause common scab produce a family of phytotoxins called the thaxtomins, which function as cellulose synthesis inhibitors. In addition, the nec1 and tomA genes are conserved in several pathogenic streptomycetes, the former of which is predicted to function in the suppression of plant defense responses. Streptomyces scabies is the oldest plant pathogen described and has a world-wide distribution, whereas species such as S. turgidiscabies and S. acidiscabies are believed to be newly emergent pathogens found in more limited geographical locations. The genome sequence of S. scabies 87-22 was recently completed, and comparative genomic analyses with other sequenced microbial pathogens have revealed the presence of additional genes that may play a role in plant pathogenicity, an idea that is supported by functional analysis of one such putative virulence locus. In addition, the availability of multiple genome sequences for both pathogenic and nonpathogenic streptomycetes has provided an opportunity for comparative genomic analyses to identify the Streptomyces pathogenome. Such genomic analyses will contribute to the fundamental understanding of the mechanisms and evolution of plant pathogenicity and plant-microbe biology within this genus.
Capsular polysaccharide (CPS) is a major virulence factor in Vibrio vulnificus, and encapsulated strains have an opaque, smooth (OpS) colony morphology, while nonencapsulated strains have a translucent, smooth (TrS) colony morphology. Previously, we showed that OpS and TrS parental strains can yield a third colony type, rugose (R), and that the resulting strains, with the OpR and TrR phenotypes, respectively, form copious biofilms. Here we show that while OpR and TrR strains both produce three-dimensional biofilm structures that are indicative of rugose extracellular polysaccharide (rEPS) production, OpR strains also retain expression of CPS and are virulent in an iron-supplemented mouse model, while TrR strains lack CPS and are avirulent. Chlorine resistance assays further distinguished OpR and TrR isolates as exposure to 3 g/ml NaOCl eradicated both OpS and OpR strains, while both TrS and TrR strains survived, but at rates which were significantly different from one another. Taken together, these results further emphasize the importance of CPS for virulence of V. vulnificus and establish a correlation between CPS expression and chlorine sensitivity in this organism. Using reverse transcriptase PCR, we also identified a nine-gene cluster associated with both CPS and rEPS expression in V. vulnificus, designated the wcr (capsular and rugose polysaccharide) locus, with expression occurring primarily in R variants. The latter results set the stage for characterization of functional determinants which individually or collectively contribute to expression of multiple EPS forms in this pathogen.Vibrio vulnificus is a gram-negative marine and estuarine bacterium capable of causing severe disease in susceptible individuals. This bacterium is normally found in fish and shellfish, including oysters. Several medical conditions can predispose a person to being susceptible to infection by this organism, including diabetes, liver disease, hemachromatosis, and a compromised immune system. When people with such conditions consume raw oysters or other seafood containing V. vulnificus, they are at risk of developing a rapidly progressing primary septicemia that can be fatal within 24 to 48 h. In an otherwise healthy individual, if a break in the skin is exposed to seawater containing this organism, a severe wound infection may develop that could necessitate amputation if treatment is not begun soon after the onset of symptoms. V. vulnificus does not infect as many people as other members of the genus Vibrio, but it is the leading reported cause of death from the consumption of seafood in the United States (28, 48).V. vulnificus produces several virulence factors, including multiple enzymes, siderophores, RtxA toxin, and a polysaccharide capsule (for a review, see reference 15). While the other factors may assist in virulence, the capsular polysaccharide (CPS) is considered a major virulence factor and has been reported to protect the bacteria from phagocytosis and complement-mediated killing by the host immune system. When grown ...
Vibrio vulnificus is a Gram-negative bacterium found in estuaries and coastal waters and is associated with human disease caused by ingestion of raw shellfish. Pathogenesis is directly related to the presence of capsular polysaccharide (CPS). Encapsulated virulent strains exhibit an opaque colony phenotype, while unencapsulated attenuated strains appear translucent. A third colony type, rugose, is caused by expression of rugose extracellular polysaccharide (rEPS) and forms robust biofilms. Vibrio vulnificus undergoes phase variation associated with altered levels of CPS and rEPS, and we show here that calcium (Ca²(+) ) significantly increases the rate of CPS and rEPS phase variation in this species. Interestingly, multiple phenotypic responses to increased [Ca²(+) ] were observed among strains, which suggests the existence of underlying cognate genetic or epigenetic differences. Certain translucent isolates contained deletions at the group I CPS operon, inferring increased [Ca²(+) ] upregulates existing phase variation mechanisms. Expanding on a previous observation (Kierek and Watnick, Proc. Natl. Acad. Sci. USA 100: 14357-14362, 2003), increased [Ca²(+) ] also enhanced biofilm formation for all phase variants. Our results show that Ca²(+) promotes both polysaccharide phase variation and biofilm formation of the resulting phase variants, thereby likely serving a dual role in persistence of V. vulnificus in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.