Neurofibrillary tangles, one of the pathologic hallmarks of Alzheimer's disease (AD), are composed of abnormally polymerized tau protein. The hyperphosphorylation of tau alters its normal cellular function and is thought to promote the formation of neurofibrillary tangles. Growing evidence suggests that cyclin-dependent kinase 5 (cdk5) plays a role in tau phosphorylation, but the function of the enzyme in tangle formation remains uncertain. In AD, cdk5 is constitutively activated by p25, a highly stable, 25kD protein thought to be increased in the AD brain. To test the hypothesis that p25/cdk5 interactions promote neurofibrillary pathology, we created transgenic mouse lines that overexpress the human p25 protein specifically in neurons. Mice with high transgenic p25 expression have augmented cdk5 activity and develop severe hindlimb semiparalysis and mild forelimb dyskinesia beginning at approximately 3 months of age. Immunohistochemical and ultrastructural analyses showed widespread axonal degeneration with focal accumulation of tau in various regions of the brain and, to a lesser extent, the spinal cord. However, there was no evidence of neurofibrillary tangles in neuronal somata or axons, nor were paired helical filaments evident ultrastructurally. These studies confirm that p25 overexpression can lead to tau abnormalities and axonal degeneration in vivo but do not support the hypothesis that p25-related induction of cdk5 is a primary event in the genesis of neurofibrillary tangles.
Hepatocellular vacuolation can be a diagnostic challenge since cytoplasmic accumulations of various substances (lipid, water, phospholipids, glycogen, and plasma) can have a similar morphology. Cytoplasmic accumulation of phospholipids following administration of cationic amphiphilic drugs (CAD) can be particularly difficult to differentiate from nonphosphorylated lipid accumulations at the light microscopic level. Histochemical methods (Sudan Black, Oil Red-O, Nile Blue, etc.) can be used to identify both nonphosphorylated and/or phosphorylated lipid accumulations, but these techniques require non-paraffin-embedded tissue and are only moderately sensitive. Thus, electron microscopy is often utilized to achieve a definitive diagnosis based upon the characteristic morphologic features of phospholipid accumulations; however, this is a low throughput and labor intense procedure. In this report, we describe the use of immunohistochemical staining for LAMP-2 (a lysosome-associated protein) and adipophilin (a protein that forms the membrane around non-lysosomal lipid droplets) to differentiate phospholipidosis and lipidosis, respectively in the livers of rats. This staining procedure can be performed on formalin-fixed paraffin embedded tissues, is more sensitive than histochemistry, and easier to perform than ultrastructural evaluation.
BackgroundThe lymph node (LN) is a crossroads of blood and lymphatic vessels allowing circulating lymphocytes to efficiently recognize foreign molecules displayed on antigen presenting cells. Increasing evidence indicates that after crossing high endothelial venules, lymphocytes migrate within the node along the reticular network (RN), a scaffold of fibers enwrapped by fibroblastic reticular cells (FRC). Light microscopy has shown that the RN contains specific extracellular matrix (ECM) proteins, which are putative molecular "footholds" for migration, and are known ligands for lymphocyte integrin adhesion receptors.ResultsTo investigate whether ECM proteins of the RN are present on the outer surface of the FRC and are thus accessible to migrating lymphocytes, ultrastructural immunohistochemical staining of cynomolgus monkey LN was performed using antibodies to human ECM proteins that were successfully employed at the light microscopic level. The fibrillar collagens I and III were observed primarily within the reticular network fibers themselves. In contrast, the matrix proteins laminin, fibronectin, collagen IV, and tenascin were observed within the reticular fibers and also on the outer membrane surface of the FRC.ConclusionsThese findings suggest a molecular basis for how the RN functions as a pathway for lymphocyte migration within the lymph node.
Among the L-type calcium channel blockers (CCBs), particularly dihydropyridines like nifedipine [1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylic acid dimethyl ester], a common adverse effect is vasodilatory edema. Newer CCBs, such as the T-and L-type CCB, mibefradilride hydrate], demonstrate antihypertensive efficacy similar to that of their predecessors but seem to have a reduced propensity to cause edema. Using a magnetic resonance imaging (MRI) T 2 mapping technique, we investigated the ability of mibefradil to reduce extracellular water accumulation caused by the L-type CCB, nifedipine, in the hindleg skeletal muscle of the spontaneously hypertensive rat. Mibefradil (10 mg/kg i.v.) and nifedipine (1 mg/kg i.v.) lowered mean arterial blood pressure by 97 Ϯ 5 and 77 Ϯ 4 mm Hg, respectively. MRI edema index (expressed as percentage increase of integral T 2 over predrug control) was significantly higher with nifedipine (2606 Ϯ 86%; p Ͻ 0.05) than with mibefradil (981 Ϯ 171%) measured 30 to 60 min after the start of drug infusion. The hindleg edema caused by nifedipine was dose dependently decreased by coadministration of mibefradil (0, 0.3, or 3 mg/kg). The hindleg edema formation was not due to albumin leakage into the interstitial space based on immunostaining. However, a 4.2-fold increase in the arterial L-/T-type CC mRNA expression ratio was observed compared with the venous L/T ratio as shown by quantitative reverse transcription polymerase chain reaction. These results demonstrate the novel utility of MRI to measure extravascular water after acute exposure to CCBs and indicate that T-type CCB activity may reduce L-type CCB-induced vasodilatory edema in the skeletal muscle vasculature, possibly by a differential effect on arteriole and venule dilatation.Calcium channel blockers comprise a class of powerful, well tolerated, and safe antihypertensive agents that are widely used either alone or as a key component of combination therapy for hypertension. It is unfortunate that a common adverse effect of calcium channel blockers (CCBs) is vasodilatory edema, which results in peripheral leg edema. Vasodilatory edema is related to several mechanisms, including arteriolar dilation (Hayashi et al., 2005), stimulation of the renin-angiotensin-aldosterone system (Schiffrin, 2003;He et al., 2005), and fluid volume retention (Messerli, 2002). The most widely held theoretical mechanism for this edema is a disproportionate decrease in arteriolar versus venular resistance, which increases hydrostatic pressure in the capillary circulation and drives fluid shifts into the interstitial compartment. Vasodilatory edema is common and dose-dependent with first generation CCBs such as verapamil and nifedipine (Messerli, 2002;Safak and Simsek, 2006). Once edema is present, it can be slow to resolve without intervention. A number of strategies exist to treat CCB-related edema, including switching CCB classes, reducing the dosage, adding known venodilators such as nitrates, or adding We declare no other so...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.