Objective. It has been suggested that subchondral bone remodeling plays a role in the progression of osteoarthritis (OA). To test this hypothesis, we characterized the changes in the rat anterior cruciate ligament transection (ACLT) model of OA and evaluated the effects of alendronate (ALN), a potent inhibitor of bone resorption, on cartilage degradation and on osteophyte formation.Methods. Male Sprague-Dawley rats underwent ACLT or sham operation of the right knee. Animals were then treated with ALN (0.03 and 0.24 g/kg/week subcutaneously) and necropsied at 2 or 10 weeks postsurgery. OA changes were evaluated. Subchondral bone volume and osteophyte area were measured by histomorphometric analysis. Coimmunostaining for transforming growth factor  (TGF), matrix metalloproteinase 9 (MMP-9), and MMP-13 was performed to investigate the effect of ALN on local activation of TGF.Results. ALN was chondroprotective at both dosages, as determined by histologic criteria and collagen degradation markers. ALN suppressed subchondral bone resorption, which was markedly increased 2 weeks postsurgery, and prevented the subsequent increase in bone formation 10 weeks postsurgery, in the untreated tibial plateau of ACLT joints. Furthermore, ALN reduced the incidence and area of osteophytes in a dosedependent manner. ALN also inhibited vascular invasion into the calcified cartilage in rats with OA and blocked osteoclast recruitment to subchondral bone and osteophytes. ALN treatment reduced the local release of active TGF, possibly via inhibition of MMP-13 expression in articular cartilage and MMP-9 expression in subchondral bone.
Conclusion. Subchondral bone remodeling plays an important role in the pathogenesis of OA. ALN or other inhibitors of bone resorption could potentially be used as disease-modifying agents in the treatment of OA.Osteoarthritis (OA) is a degenerative joint disease characterized by pain, cartilage loss, and joint stiffness. Although OA has long been considered to be primarily a cartilage disorder associated with focal articular cartilage degradation, this disease is accompanied by well-defined changes in the subchondral and periarticular bone, including sclerosis and cyst and osteophyte formation (1). The importance of the bone changes in the initiation and progression of OA is still being debated. It has been suggested that increased subchondral bone stiffness reduces the ability to dissipate the load and distribute the strain generated within the joint. This increases peak dynamic forces in the overlying articular cartilage and can accelerate its damage over time (2). The functional integrity of the articular cartilage can therefore depend on the mechanical properties of the underlying bone. Accordingly, cartilage damage leads to full-thickness cartilage loss only upon repetitive loading over an already stiffened subchondral bone plate (3).Recent studies have demonstrated increased subchondral bone turnover accompanied by specific architectural changes in the subchondral trabecular bone in OA joints (4,5...
Nitrogen-containing bisphosphonates were shown to cause macrophage apoptosis by inhibiting enzymes in the biosynthetic pathway leading from mevalonate to cholesterol. This study suggests that, in osteoclasts, geranylgeranyl diphosphate, the substrate for prenylation of most GTP binding proteins, is likely to be the crucial intermediate affected by these bisphosphonates. We report that murine osteoclast formation in culture is inhibited by both lovastatin, an inhibitor of hydroxymethylglutaryl CoA reductase, and alendronate. Lovastatin effects are blocked fully by mevalonate and less effectively by geranylgeraniol whereas alendronate effects are blocked partially by mevalonate and more effectively by geranylgeraniol. Alendronate inhibition of bone resorption in mouse calvaria also is blocked by mevalonate whereas clodronate inhibition is not. Furthermore, rabbit osteoclast formation and activity also are inhibited by lovastatin and alendronate. The lovastatin effects are prevented by mevalonate or geranylgeraniol, and alendronate effects are prevented by geranylgeraniol. Farnesol and squalene are without effect. Signaling studies show that lovastatin and alendronate activate in purified osteoclasts a 34-kDa kinase. Lovastatin-mediated activation is blocked by mevalonate and geranylgeraniol whereas alendronate activation is blocked by geranylgeraniol. Together, these findings support the hypothesis that alendronate, acting directly on osteoclasts, inhibits a rate-limiting step in the cholesterol biosynthesis pathway, essential for osteoclast function. This inhibition is prevented by exogenous geranylgeraniol, probably required for prenylation of GTP binding proteins that control cytoskeletal reorganization, vesicular fusion, and apoptosis, processes involved in osteoclast activation and survival.
Multinucleated bone-resorbing osteoclasts (Ocl) are cells of hematopoietic origin that play a major role in osteoporosis pathophysiology. Ocl survival and activity require M-CSF and RANK ligand (RANKL). M-CSF signals to Akt, while RANKL, like TNFa, activates NF-jB. We show here that although these are separate pathways in the Ocl, signaling of all three cytokines converges on mammalian target of rapamycin (mTOR) as part of their antiapoptotic action. Accordingly, rapamycin blocks M-CSF-and RANKL-dependent Ocl survival inducing apoptosis, and suppresses in vitro bone resorption proportional to the reduction in Ocl number. The cytokine signaling intermediates for mTOR/ribosomal protein S6 kinase (S6K) activation include phosphatidylinositol-3 kinase, Akt, Erks and geranylgeranylated proteins. Inhibitors of these intermediates suppress cytokine activation of S6K and induce Ocl apoptosis. mTOR regulates protein translation acting via S6K, 4E-BP1 and S6. We find that inhibition of translation by other mechanisms also induces Ocl apoptosis, demonstrating that Ocl survival is highly sensitive to continuous de novo protein synthesis. This study thus identifies mTOR/S6K as an essential signaling pathway engaged in the stimulation of cell survival in osteoclasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.