Background Rosai-Dorfman disease (RDD) is a rare histiocytosis which involves principally lymph nodes. Thyroid involvement in RDD is a very rare situation, and lung involvement is even rarer. Case presentation We report the case of a 46-year-old woman presenting a painless mass in the right side of the neck and subacute dyspnoea. Computerised tomography (CT) scans of the neck and thorax showed a large thyroid mass causing tracheal stenosis and multiple cystic lesions in both lungs. Subtotal thyroidectomy with a tracheal segment resection and histological analysis confirmed the diagnosis of nodal and extranodal (thyroid, tracheal and probably lung) Rosai-Dorfman disease (RDD) with the presence of increased numbers of IgG4-bearing plasma cells. Clinical, functional and radiological follow up 4 years after surgery without medical treatment did not show any disease progression. Conclusions This case report indicates a benign course of nodal RDD with thyroid and tracheal infiltration following surgical resection, association of typical histological signs of RDD (emperipolesis) with IgG4-related disease features, and that lung cysts might be a manifestation of RDD.
Background Active sodium reabsorption is the major factor influencing renal oxygen consumption and production of reactive oxygen species (ROS). Increased sodium reabsorption uses more oxygen, which may worsen medullary hypoxia and produce more ROS via enhanced mitochondrial ATP synthesis. Both mechanisms may activate the hypoxiainducible factor (HIF) pathway. Because the collecting duct is exposed to low oxygen pressure and variations of active sodium transport, we assessed whether the HIF pathway controls epithelial sodium channel (ENaC)-dependent sodium transport. Methods We investigated HIF's effect on ENaC expression in mpkCCDcl4 cells (a model of collecting duct principal cells) using real-time PCR and Western blot and ENaC activity by measuring amiloride-sensitive current. We also assessed the effect of hypoxia and sodium intake on abundance of kidney sodium transporters in wild-type and inducible kidney tubule-specific Hif1α knockout mice. Results In cultured cells, activation of the HIF pathway by dimethyloxalylglycine or hypoxia inhibited sodium transport and decreased expression of βENaC and γENaC, as well as of Na,K-ATPase. HIF1α silencing increased βENaC and γENaC expression and stimulated sodium transport. A constitutively active mutant of HIF1α produced the opposite effect. Aldosterone and inhibition of the mitochondrial respiratory chain slowly activated the HIF pathway, suggesting that ROS may also activate HIF. Decreased γENaC abundance induced by hypoxia in normal mice was abolished in Hif1α knockout mice. Similarly, Hif1α knockout led to increased γENaC abundance under high sodium intake. Conclusions This study reveals that γENaC expression and activity are physiologically controlled by the HIF pathway, which may represent a negative feedback mechanism to preserve oxygenation and/or prevent excessive ROS generation under increased sodium transport.
The cellular mechanisms of kidney tubule repair are poorly characterized in human. Here, we applied single-nucleus RNA sequencing to analyze the kidney in the first days after acute injury in 5 critically ill patients with COVID-19. We identified abnormal proximal tubule cell states associated with injury, characterized by altered functional and metabolic profiles and by pro-fibrotic properties. Tubule repair involved the plasticity of mature tubule cells in a process of cell de-differentiation and re-differentiation, which displayed substantial similarities between mouse and man. In addition, in man we identified a peculiar tubule reparative response determining the expansion of progenitor-like cells marked by PROM1 and following a differentiation program characterized by the sequential activation of the WNT, NOTCH and HIPPO signaling pathways. Taken together, our analyses reveal cell state transitions and fundamental cellular hierarchies underlying kidney injury and repair in critically ill patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.