The aim of this study is to represent simultaneously changes in the spatial distribution of the Atlantic forest during the last 17,000 years. To characterize such changes, here we focused on three different forest physiognomies, evergreen, semi-deciduous, and Araucaria, and we provide a list of indicator taxa for each class retrieved from the original published datasets. A review of the published fossil pollen records allowed us to classify regional behaviors in three main areas of distribution, north of 15°S, between 15°and 23°S and south of 23°S latitude that correspond to three climatic geographical barriers. Statistical probability density function method was used to illustrate changes in forest physiognomies throughout the three distribution areas. We show that the three modern barriers also functioned through the past. Asynchronous patterns of forest physiognomies are linked to an antiphasing pattern of monsoon precipitation between the northern and central area, whereas in the southern area, it is linked to the frequency and intensity of the polar advection in the subtropics. Our results attest to strong climate forcing on forest distribution between the late glacial and the interglacial period. They call into question the common reference to the last glacial maximum as a major (and sometimes as the only) driver of forest-related vicariance and genetic diversity patterns, but suggest that instead, orbital cycles were the main drivers of the successive expansion/contraction of the Atlantic forest throughout the Quaternary.Abstract in Portuguese is available with online material.
The impact of rapid habitat loss and fragmentation on biodiversity is a major issue. However, we still lack an integrative understanding of how these changes influence biodiversity dynamics over time. In this study, we investigate the effects of these changes in terms of both niche-based and neutral dynamics. We hypothesize that habitat loss has delayed effects on neutral immigration-extinction dynamics, while edge effects and environmental heterogeneity in habitat patches have rapid effects on niche-based dynamics.We analyzed taxonomic and functional composition of 100 tree communities in a tropical dry forest landscape of New-Caledonia subject to habitat loss and fragmentation. We designed an original, process-based simulation framework, and performed Approximate Bayesian Computation to infer the influence of niche-based and neutral processes. Then, we performed partial regressions to evaluate the relationships between inferred parameter values of communities and landscape metrics (distance to edge, patch area, and habitat amount around communities), derived from either recent or past (65 yr ago) aerial photographs, while controlling for the effect of soil and topography.We found that landscape structure influences both environmental filtering and immigration. Immigration rate was positively related to past habitat amount surrounding communities. In contrast, environmental filtering was mostly affected by present landscape structure and mainly influenced by edge vicinity and topography.Our results highlight that landscape changes have contrasting spatio-temporal influences on niche-based and neutral assembly dynamics. First, landscape-level habitat loss and community isolation reduce immigration and increase demographic stochasticity, resulting in slow decline of local species diversity and extinction debt. Second, recent edge creation affects environmental filtering, incurring rapid changes in community composition by favoring species with edge-adapted strategies. Our study brings new insights about temporal impacts of landscape changes on biodiversity dynamics. We stress that landscape history critically influences these dynamics and should be taken into account in conservation policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.