In this paper a computational approach of musical orchestration is presented. We consider orchestration as the search of relevant sound combinations within large instruments sample databases and propose two cooperating metaheuristics to solve this problem. Orchestration is seen here as a particular case of finding optimal constrained multisets on a large ensemble with respect to several objectives. We suggest a generic and easily extendible formalization of orchestration as a constrained multiobjective search towards a target timbre, in which several perceptual dimensions are jointly optimized. We introduce Orchidée, a time-efficient evolutionary orchestration algorithm that allows the discovery of optimal solutions and favors the exploration of non-intuitive sound mixtures. We also define a formal framework for global constraints specification and introduce the innovative CDCSolver repair metaheuristic, thanks to which the search is led towards regions fulfilling a set of musical-related requirements. Evaluation of our approach on a wide set of real orchestration problems is also provided.
In this paper we first introduce a set of functions to predict the timbre features of an instrument sound combination, given the features of the individual components in the mixture. We then compare, for different classes of sound combinations, the estimated values of the timbre features to real measurements and show the accuracy of our predictors. In the second part of the paper, we present original musical applications of feature prediction in the field of computer-aided orchestration. These examples all come from real-life compositional situations, and were all produced with Orchide´e, an innovative framework for computer-aided orchestration recently designed and developed at IRCAM, Paris.
Abstract. In this paper we introduce an hybrid evolutionary algorithm for computer-aided orchestration. Our current approach to orchestration consists in replicating a target sound with a set of instruments sound samples. We show how the orchestration problem can be viewed as a multi-objective 0/1 knapsack problem, with additional constraints and a case-specific criteria formulation. Our search method hybridizes genetic search and local search, for both of which we define ad-hoc genetic and neighborhood operators. A simple modelling of sound combinations is used to create two new mutation operators for genetic search, while a preliminary clustering procedure allows for the computation of sound mixtures neighborhoods for the local search phase. We also show in which way user interaction might be introduced in the orchestration procedure itself, and how to lead the search according to the users choices.
Abstract. In this paper a computational approach of musical orchestration is presented. We consider orchestration as the search of relevant sound combinations within large instruments sample databases. The working environment is Orchidée an evolutionary orchestration algorithm that allows a constrained multiobjective search towards a target timbre, in which several perceptual dimensions are jointly optimized. Up until now, Orchidée was bounded to "time-blind" features, by the use of averaged descriptors over the whole spectrum. We introduce a new instrumental model based on Gaussian Mixture Models (GMM) which allows to represent the complete spectro-temporal structure. We then present the results of the integration of our model and improvement that it brings to the existing system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.