This contribution presents the development of an optical spectroscopy device, called SpectroLive, that allows spatially-resolved multiply-excited autofluorescence and diffuse reflectance measurements. Besides describing the device, this study aims at presenting the metrological and safety regulation validations performed towards its aimed application to skin carcinoma in vivo diagnosis. This device is made of six light sources and four spectrometers for detection of the back-scattered intensity spectra collected through an optical probe (made of several optical fibers) featuring four source-to-detector separations (from 400 to 1000 µm). In order to be allowed by the French authorities to be evaluated in clinics, the SpectroLive device was successfully checked for electromagnetic compatibility and electrical and photobiological safety. In order to process spectra, spectral correction and metrological calibration were implemented in the post-processing software. Finally, we characterized the device’s sensitivity to autofluorescence detection: excitation light irradiance at the optical probe tip in contact with skin surface ranges from 2 to 11 W/m², depending on the light source. Such irradiances combined to sensitive detectors allow the device to acquire a full spectroscopic sequence within 6 s which is a short enough duration to be compatible with optical-guided surgery. All these results about sensitivity and safety make the SpectroLive device mature enough to be evaluated through a clinical trial that aims at evaluating its diagnostic accuracy for skin carcinoma diagnosis.
In the context of cutaneous carcinoma diagnosis based on in vivo optical biopsy, Diffuse Reflectance (DR) spectra, acquired using a Spatially Resolved (SR) sensor configuration, can be analyzed to distinguish healthy from pathological tissues. The present contribution aims at studying the depth distribution of SR-DR-detected photons in skin from the perspective of analyzing how these photons contribute to acquired spectra carrying local physiological and morphological information. Simulations based on modified Cuda Monte Carlo Modeling of Light transport were performed on a five-layer human skin optical model with epidermal thickness, phototype and dermal blood content as variable parameters using (i) wavelength-resolved scattering and absorption properties and (ii) the geometrical configuration of a multi-optical fiber probe implemented on an SR-DR spectroscopic device currently used in clinics. Through histograms of the maximum probed depth and their exploitation, we provide numerical evidence linking the characteristic penetration depth of the detected photons to their wavelengths and four source–sensor distances, which made it possible to propose a decomposition of the DR signals related to skin layer contributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.